
Algorithm Construction
Notation 0lim))(()()(

)(


xf

xg

x
xgOxf

 


)(

)(lim))(()(xf

xg

x
xgxf

Memory
Models

Caches and virtual memory can
make memory an issue of speed

Strategies Divide, conquer, combine
 Greediness: make the choice

which seems best right now:
problem must have optimal
substructure (solution for one
problem is contained within the
solution for larger problems)

 Dynamic programming: used
where subproblems overlap
(remembers partial solutions by
solving increasingly large
problems or by memoisation)

ADTs May model application with
successively decomposed ADTs

Sorting
Selection Iterates once for every list item:

on the ith iteration the next
smallest item in the unsorted list
is moved to its final position

 Unstable due to exchanges
Bubble Iterate over adjacent pairs of

items, exchanging them if they
are out of order: upon every
iteration at least 1 element is
moved to its final position

 Stable
Insertion Iterates over all list items, and the

ith iteration places the ith item in
its correct position amongst the
first i items

 This sorting method is stable if
you don’t sink on equal key values

Shell Performs a series of “stride s”
insertion sorts on list subsets
(subset k (0 ≤ k < s) contains
items k, s + k, 2s + k, ..)

 Try stride sequence si-1 = 3si + 1
 Unstable due to subsetting
Quick Divide items into two partitions by

pivot value, recursively quick sort
the two halves and finally join
everything together

 Partition by keeping two pointers:
one for an item in the left half
greater than the pivot, one for an
item in the right half less than the

pivot. When you have a pair of
valid pointers, swap and iterate
until they cross, move in partition

 Can use logarithmic space if you
first recurse on the smaller
partition then iterate on the larger

 In-place partition usually unstable
Heap Create a max-heap by bottom up

heapification, then read items off
it to the same array in place

 Unstable
Merge Mergesort the two halves of the

array and then combine the two
sorted halves

 Merge in place by either copying
the merged arrays back into the
original array or only copy the left
sub array to workspace (we will
never overwrite the right array
before they have been consumed)

 Stable if we favour first half
Counting Assume all keys are in range 0 to

k – 1, then use items as indexes
into an array of that size,
incrementing it as a count. When
all items are accounted for,
translate the counts into indexes
into the array that indicate where
the last value of that key is to be
stored. You can now make a pass
backwards through the original
array placing each item at the
position indicated by the count
array, and update the index that
array stores appropriately

 Stable, due to reversed last pass
Radix A sequence of stable sub-sorts:

sort by the digits of the key from
least to most significant using e.g.
counting sort

 Stable due to LS digit first
Bucket If we know that key values are

distributed over some range,
divide that range into N intervals
(buckets), which store linked lists.
You can now add items to those
linked lists (maintaining sorted
order), and do a final pass to read
them back out of the buckets

Order Statistics
Quick Pick an item in the list as a pivot,

partition on it then recurse on the
appropriate partition

Worst Case
Linear

Find the median element of an
array storing the medians of each
group of 5 elements in the array:
this can be used as the pivot

 Since this guarantees at least
3N/10 values greater than or less
than the pivot we get a linear
worst case after the partitioning

Data Structures
SLL Use a sentinel head node to avoid

having to special case insertion
Deque Superset of queue and stack
Heap Represented as a complete binary

tree (every level filled): every node
obeys the heap property

 When stored in an array the node
at index i has children at 2i + 1
and 2i + 2

 Add new items at the end of the
array then bubble the new item up
by comparing with parent

 Remove items by moving the last
element in the array into the hole
then bubbling it down

 Bottom up heapification works by
heapifying on successive subtrees
from the lowest levels upwards

Trees

 Deleting from a BST when there

are two non-empty subtrees can
be done by moving the smallest
node in the right subtree to root
and attach the deleted nodes left
subtree to it (it can’t have one of
its own since it’s the smallest)

Splay
Tree

 Splay nodes (move them to root)

as above upon insertion/search
 Number of comparisons required

for M insert/searches in a N node
tree is O((N+M)log(N+M)), so for
M = O(N) have amortised

O(log(N)) amortized cost
 Cost of any sequence of splay

operations is within a constant
factor of access to any static tree

 Adapt to NU access patterns
2-3-4
Tree

All pointers to empty subtrees are
the same distance from the root

 To insert, search until we reach a
leaf node. Insertion is now trivial
unless it’s a 4-node: in this case
split it into 2 2-nodes (inserting the
median value from the 4-node into
the parent). This may cause
cascading inserts: in the case that
it reaches the root, split it and
increase the length of both sides

 Avoid cascading inserts by splitting
any 4-nodes on the way down the
tree

 To delete, find the node with value
to delete. If it is a leaf node,
remove it, otherwise find the
largest key in its subtree and use it
as a replacement. Empty leaf
nodes are solved by transferring a
key via the parent from a sibling 4-
node or by merging a sibling 2 or
3-node with it and taking a key
from the parent. This may cause
cascading deletions: in the case
that it reaches the root, merge the
two children of the root and
decrease path length

Red-Black
Tree

 Every red node has a black parent,

and there must be an equal
number of black nodes on every
path from the root to a node with
fewer than two children (no
greater than a factor of 2 out)

 All operations inferable from the 2-
3-4 equivalent to the tree

Skip Lists A linked lists with various heights
of nodes that allow you to skip
most items when searching

 Head node acts as a sentinel with

the maximum possible height
 When inserting or deleting, use a

helper function which finds the
largest node at each level with key
less than an argument: this makes
the actual operation trivial

 Given a number of levels O(log(N))
and random distributions at each
level have search time O(log(N))

 Grow the maximum height
dynamically: add a level whenever
N = 2h+2

 Choose a nodes height by taking
advantage of the fact that it
requires Pr(h=k)=2-k

 and noting
that that is the probability of the
first k bits or a r.v. being all 0

Hash
Table

Use a key value with hash function
to index into a hash table

 Possible hash functions, M table:
 Divide: h(k) = k mod M
 Multiply: h(k) = flr[M(kA mod 1)]
 Open addressing uses secondary

probes to find a new bucket given
collision, using a hash function h(k,
i) where i is probe number

 Linear: h(k, i) = h’(k) + ci mod M
 Leads to primary clustering
 Quadratic: h(k, i) = h’(k) + c1i + c2i2 mod M

 Pick c1 and c2 carefully to visit
every slot: at least coprime to M

 Get secondary clustering (keys
with same initial hash value have
same sequence of probes)

 Double Hashing: h(k, i) = h1(k) + ih2(k) mod M

 Avoid secondary clustering by picking:

h1(k1) = h1(k2)  h2(k1)  h2(k2)
 Deletion hard: use sentinel values,

but they accumulate
 Keep an eye on the load factor,

and allocate a new table when it
gets too high (require rehash all)

 Better than open addressing is
chaining, where you have buckets
of items, as in bucket sort earlier

Radix
Search

Organises data in a tree, normal
comparison is replaced with
branching on successive bits of key

 No sorted order implied
Trie Similar to radix tree, but data is

stored only in leaf nodes: the path
to a leaf node is the shortest key
prefix which distinguishes the key
from all others in the trie

 Sort is just in-order traversal, and
a representation is unique

 Effective with long keys (strings?),
imbalance bounded by key length

 To insert, insert node directly (if
you find an empty subtree)
otherwise insert just enough new
internal nodes to disambiguate the
new tree item from others

 To delete, remove the leaf node
and then delete ancestor internal
nodes which don’t have 2 subtrees

 Multi-way tries branch on multiple
bits of the key instead of one:
better data locality (smaller trees)
and search work is not affected
unlike 2-3-4 trees (just use key to
index into the subtree array)

