
Binary In HOL

2na = a a 0 · · · 0 (n times)

a× b =
∑n−1

i=0 aib a 0 · · · 0 (i times)

Bits = {T, F}

|bn−1 · · · b0| = n

(w1 = w2) ≡ (|w1| = |w2|) ∧ ∀i.i < |w1| ⇒ w1[i] = w2[i]

bn−1 · · · b0[i] = (i ≥ n)→ (0|bi)

m ≥ n⇒ (w[m : n])[i] = ((i+ n ≤ m)→ (w[i+ n]|0))

Bw(b)[0] = b

Bv(T) = 1, Bv(F) = 0

V (bn−1 · · · b0) =
∑n−1

i=0 2ibi

V (W nm) = m mod 2n

w{n← b}[i] = (i = n)→ (b|w[i])

w1] w2 = W (max(|w1|, |w2|) + 1) (V (w1) + V (w2))

bm−1 · · · b0 a cn−1 · · · c0 = bm−1 · · · b0cn−1 · · · c0
b.w = b→ (w|W |w| 0)

Hardware In HOL

The behaviour of a device Dev is specified by a predicate that
holds only when the signals it relates are allowable values on the
corresponding lines of Dev. Circuits are specified by conjoining
multiple device predicates and using ∃-quantification to hide
internal lines.

To verify a circuit, show that ` ∀a.Circuit_Imp(a) ⇒
Circuit(a) or ` ∀a.Circuit_Imp(a) ⇐⇒ Circuit(a).

Using the underspecified (partial specification) form allows de-
sign freedom, but may fail to stipulate some important aspect
of device behaviour.

Inconsistent models trivially satisfying any specifi-
cation, so you may want to prove a consistency
theorem of the form ∃v1 · · · vn.M [v1, · · · , vn] or
∀i1 · · · in.∃o1 · · · om.M [i1, · · · , in, o1, · · · , om].

Sequential devices are modelled my taking the values on lines
to be sequences of values modelled as functions of time. Com-
binatorial devices can be modelled as sequential devices having
no delay.

Stable(t1, t2)(f) ≡ ∀t.t1 ≤ t ∧ t < t2 ⇒ (f(t) = f(t1)) - f is
constant from t1 to just before t2.

Next(t1, t2)(f) ≡ t1 < t2 ∧ f(t2) ∧ (∀t.t1 < t ∧ t < t2 ⇒ ¬f(t))
- t2 is the first time strictly after t1 that f holds.

Rose(f)(t) ≡ ¬f(t− 1) ∧ f(t)

Rise(f)(t) ≡ ¬f(t) ∧ f(t+ 1)

Simple Switch Model

Ntran(g, a, b) ≡ (g ⇒ (a = b))

Ptran(g, a, b) ≡ (¬g ⇒ (a = b))

This is somewhat inadequate as it suggests circuits can be used
backwards (e.g. Inv(i, o) ⇒ i = ¬o). It also does not account
for different conduction characteristics of transistors. N-type
transistors transmit logic low well, but high poorly, and vice
versa for P-types.

However, it is easy to use (combinatorial) and good for sanity
checking.

Fourman’s Switch Model

Modify the model to use three logic values: {Hi,Lo,X}.

Ntran(g, a, b) ≡ (g = Hi)⇒ ((a = Lo) = (b = Lo))

Ptran(g, a, b) ≡ (g = Lo)⇒ ((a = Hi) = (b = Hi))

Strong(v) ≡ (v = Hi) ∨ (v = Lo)

TBv(Hi) = 1, TBv(Lo) = 0

Unidirectional Sequential Model

This allows us to reason about gates making use of dynamic
logic. Use four logic values: {Hi,Lo, F l,X}.

Strong(v) ≡ (v = Hi) ∨ (v = Lo)

Float(v) ≡ v = Fl

v1U v2 ≡ (Strong(v1) ∧ Float(v2)) → (v1|(Float(v1) ∧
Strong(v2))→ (v2|(Float(v1) ∧ Float(v2))→ (Fl|X)))

Join(i1, i2, o) ≡ ∀t.out(t) = i1(t)U i2(t)

Cap(i, o) ≡ ∀t.o(t) = Strong(i(t)) → (i(t)|(t = 0) →
(X|(Float(i(t)) ∧ Strong(i(t− 1)))→ (i(t− 1)|Fl)))

Ntran(g, a, b) ≡ ∀t.b(t) = (g(t) = Hi) → (a(t)|(g(t) = Lo ∨
a(t) = Fl)→ (Fl|X)))

Ptran(g, a, b) ≡ ∀t.b(t) = (g(t) = Lo) → (a(t)|(g(t) = Hi ∨
a(t) = Fl)→ (Fl|X)))

Pu(i, o) ≡ ∀t.o(t) = Float(i(t))→ (Hi|i(t))

This model is of dubious electrical validity, but can sanity check
functional correctness of sometimes quite subtle dynamic logic
circuits.

All of these models may break down when shorts are present in
the circuit.

1

Temporal Abstraction

A time mapping is a function f such that ∀t1t2.(t1 < t2) ⇒
(f(t1) ≤ f(t2)), mapping abstract to concrete time.

To verify a model using temporal abstraction, check that `
M [v1, · · · , vn] ⇒ S[v1 ◦ f, · · · , vn ◦ f]„ since S is couched in
terms of concrete time.

IsT imeof 0 s t = s(t) ∧ ∀t′.t′ < t⇒ ¬s(t′)

IsT imeof (n+ 1) s t = ∃t′.IsT imeof n s t′ ∧Next t′ t s

T imeof s n = εt.IsT imeof n s t - the time such that s is true
for the nth time, if such a time exists.

Inf p = ∀t.∃t′.t′ > t ∧ p t′

Inf p ⇒ ∀n.∃!t.IsT imeof n p t, so Inf p ⇒
IsT imeof n p (Timeof p n).

swhenP = s ◦ (Timeof P)

f@ck = f when (Rise ck)

Temporal Logic Motivation

Hoare logic for data reasoning, temporal logic for time (control)
reasoning.

There are some properties me might want to hold that cannot
be expressed as Hoare style correctness specifications, such as
the fact that a variable does not change during the computation.

Model Checking

Express models as state transition systems.

B :: states → bool, predicate tests whether state is an initial
state.

R :: states × states → bool, predicate tests whether a state
transitions to another.

Can have δ :: states × inputs → states, so R(s, s′) = ∃i.s′ =
δ(s, i): this gives a deterministic machine with “input non-
determinism”.

If you have n state variables vi and transition functions δi:

R(~v,~v′) = ∃n.
∨n

i=1

[∧n
j=1 v

′
j = (i = j)→ (δj(~v, n)|vj)

]
Can compute set of reachable states by S0 = {s|B(s)}, Sn+1 =
Si∪{s|∃u.u ∈ Sn∧R(u, s)}. If the state space is finite this will
reach a fixed point.

In symbolic model checking, sets of states are represented via
predicates rather than explicit representation. In general, the
transition relation on states with n variables is represented as
a formula with 2n variables.

ReachBy 0RB s = B(s)

ReachBy (n + 1)RB s = ReachBy nRB s ∨
∃u.ReachBy nRB u ∧R(u, s)

ReachRB s ≡ ∃n.ReachBy nRB s

(ReachBy nRB = ReachBy (n + 1)RB) ⇒ (ReachRB =
ReachBy nRB)

Reduced ordered binary decision diagrams (ROBDDs) are used
for representing Boolean formulas. They are canonical (given
a variable ordering) and efficient to manipulate, both in con-
struction and finding satisfying assignments. Fast to detect
fixed points due to hash-consing. However, efficiency of the
representation depends heavily upon variable ordering (the dif-
ference between exponential and linear space consumption).

Early quantification / disjunctive partitioning can be used to
reduce the size of BDDs we need to manipulate. In particular,
you may never have to compute the transition relation BDD.
For the n state variable case above:

ReachBy (n + 1)RB ~v = ReachBy nRB ~v ∨∨n
i=1 ∃v′i.ReachBy nRB (~v{i← v′i}) ∧ vi = δi(~v{i← v′i})

To check if a property Q is true is all reachable states, compute
the BDD of ReachRB s⇒ Q s and check if it is the single node
T . Otherwise extract counterexample satisfying ReachRB s ∧
¬(Q s) by finding the first n at which ReachnRB s ∧ ¬(Q s)
is satisfiable and hence a state sn satisfying the formula. Then
find a state si−1 satisfying ReachBy (i− 1)RB s ∧ R(s, si) it-
eratively until you have a trace of states demonstrating a coun-
terexample.

CTL

CTL is a branching time logic: may talk about all or some
paths.

A model is a pair (R, s) of a transition relation and an initial
state.
Formula Semantics
Atom(p) λ(R, s).p(s)
¬P λ(R, s).¬P (R, s)
P ∧Q λ(R, s).P (R, s) ∧Q(R, s)
P ∨Q λ(R, s).P (R, s) ∨Q(R, s)
P ⇒ Q λ(R, s).P (R, s)⇒ Q(R, s)
AX P λ(R, s).∀s′.R(s, s′)⇒ P (R, s′)
EX P λ(R, s).∃s′.R(s, s′) ∧ P (R, s′)

A[P U Q] λ(R, s).∀σ.Path(R, s)σ ⇒ HoldsUntil P QRσ
E[P U Q] λ(R, s).∃σ.Path(R, s)σ ∧HoldsUntil P QRσ
AF P A[T U P] - P holds somewhere along every path.
EF P E[T U P] - P holds somewhere along some path.
AGP ¬(EF (¬P)) - P holds everywhere along every path.
EGP ¬(AF (¬P)) - P holds everywhere along some path.

A[P W Q] ¬E[(P ∧ ¬Q)U(¬P ∧ ¬Q)], partial A[P U Q]

HoldsUntil P QRσ ≡ ∃i.Q(R, σ(i)) ∧ ∀j.j < i⇒ P (R, σ(j))

Path(R, s)σ = (σ(0) = s) ∧ ∀t.R(σ(t), σ(t+ 1))

2

It is straightforward to apply model checking to CTL. For ex-
ample, to check EF (Atomp)(R, s) mark states satisfying p and
repeatedly mark the states with at least one marked succes-
sor until a fixed point is reached: S0 = {s|p(s)}, Si+1 =
Si ∪ {s|∃s′.R(s, s′) ∧ s′ ∈ Si}. The formula is true in ex-
actly those states that are marked. Similar algorithm for
AF (Atomp) (mark if all successors marked). Can recursively
decompose problem.

Cannot express fairness properties: must be implemented in
the model checking algorithm somehow.

Cannot express property “on every path there is a point after
which p is always true on that path”.

LTL

LTL is a linear time logic: may talk about all paths and par-
ticular paths.

Formula Semantics
Atom(p) λσ.p(σ(0))
¬P λσ.¬(P (σ))
P ∨Q λσ.P (σ) ∨Q(σ)
X P λσ.P (Tail 1σ)
F P λσ.∃m.P (Tailmσ)
GP λσ.∀m.P (Tailmσ)

[P U Q] λσ.∃i.Q(Tail i σ) ∧ ∀j.j < i⇒ P (Tail j σ)

Tailmσ = λn.σ(n+m)

Can express fairness properties such as “if p holds infinitely
often on path then so does q”, using A(G(F p)⇒ G(F q)).

Can express “on every path there is a point after which p is
always true on that path”, using F Gp.

Cannot express property “from every state it is possible to get
to a state for which p holds”.

CTL*

Allows the expression of both state and path properties.

CTL is CTL* restricted with X, F , G and [−U−] preceded by
A or E.

LTL consists of CTL* formulas of the form A− where the only
state formulas are atomic.

Semantics and form fairly obvious. State semantics are of form
λ(R, s), path semantics of form (R, σ).

ITL

Specifies properties of finite intervals (sequences of states with
a beginning and an end).

Useful for talking about transactions.

Formula Semantics
Atom(p) λ 〈s0, · · · , sn〉 .p(s0)
true λ 〈s0, · · · , sn〉 .T
¬P λ 〈s0, · · · , sn〉 .¬P 〈s0, · · · , sn〉
P ∨Q λ 〈s0, · · · , sn〉 .P 〈s0, · · · , sn〉 ∨Q 〈s0, · · · , sn〉
skip λ 〈s0, · · · , sn〉 .n = 1

P ;Q
λ 〈s0, · · · , sn〉 .∃k.k ≤ n∧

P 〈s0, · · · , sk〉 ∧Q 〈sk, · · · , sn〉

P∗

λ 〈s0, · · · , sn〉 .∃w1 · · ·wl.

〈s0, · · · , sn〉 = w1 · · ·wl ∧
l∧

i=1

P (wi)

PSL

SEREs: finite state decidable matchers, similar to but weaker
than ITL.
Formula Semantics
Atom(p) λw.p(head(w))
r1|r2 λw.r1(w) ∧ r2(w)
r1; r2 λw.∃w1, w2.w = w1.w2 ∧ r1(w1) ∧ r2(w2)
r1 : r2 λw.∃w1, s, w2.w = w1.s.w2 ∧ r1(w1.s) ∧ r2(s.w2)
r1&&r2 λw.r1(w) ∧ r2(w)
r[∗] λw.w = 〈〉 ∨ ∃w1 · · ·wl.w = w1 · · ·wl ∧

∧l
i=1 r(wi)

Formula Semantics
Atom(p) λσ.p(σ(0))
¬f λσ.¬(f(σ))

f1 ∨ f2 λσ.f1(σ) ∨ f2(σ)
next f λσ.f(Tail 1σ)
{r}(f) λσ.∃w, σ′.σ = w.σ′ ∧ r(w) ∧ f(σ′)

{r1}|− > {r2}
λσ.∃w1, σ

′.σ = w1.σ
′ ∧ r1(w1)⇒

∃w2, σ
′′.σ′ = w2.σ

′′ ∧ r2(w2)
{f1 until f2} λσ.∃i.f2(Tail i σ) ∧ ∀j.j < i⇒ f1(Tail j σ)

PSL allows SEREs and formulae to be clocked. This can
be translated away by pushing @clk inwards: e.g. b@clk =
{!clk[∗]; clk&b}.

PSL’s optional branching extension (OBE) contains a complete
copy of CTL.

PSL may be statically checked using finite automata and
LTL/CTL methods. It may also be checked dynamically
against simulation runs, but that requires the semantics to al-
low for the possibility of infinite paths.

Layered structure:

• Boolean layer: atomic predicates

• Temporal layer: LTL or CTL

• Verification layer: how to use predicates, constructs such
as assert and assume

3

• Modelling layer: HDL constructs for specifying and veri-
fying things that logics cannot check, typically involving
event counts (temporal logic has no arithmetic)

Hardware Verification

Static verification:

• Does not execute the model

• Uses a model checker, type checker or equivalence checker

Dynamic verification:

• Actually executes the model on test data

• Uses a simulator

Relating Trace And Event Models

Register transfer level (RTL): behaviour is a state machine,
registers with zero-delay combinatorial logic. May or may not
have explicit clocks.

Trace level: clock edges are explicit, combinatorial logic can
have delays.

Cycle semantics: similar to state machine view of RTL.

Behavioural level: machine cycles merge and only I/O events
are significant.

HDLs use discrete event simulation: variable changes cause
threads to be enabled, the threads are executed non-
deterministically and potentially trigger more events. Event
triggers are captured by the always construct of Verilog: posi-
tive/negative edges or combinatorial triggers.

State of a simulation consists of values of variables and a set of
enabled threads.

Verilog simulation cycle:

1. If there is no enabled thread, advance simulation time and
go to 1

2. Otherwise, choose one thread and execute it

3. Fire event controls activated by last thread to enable new
threads

VHDL simulation cycle:

1. If there is no enabled thread, advance simulation time and
go to 1

2. Otherwise, execute all enabled threads in parallel

3. Fire event controls activated by last threads to enable new
threads

Steps at the same simulation time happen in δ-time.

We would like to unify the event semantics of the simulators
used by designers with the trace semantics of logic. Ideally, we
could prove that traces are sequences of quiescent simulation
states. Impossible in general in Verilog due to simulation non-
determinism, unless you use non-blocking assignment (equiva-
lent to all simulated events in a cycle referring to old rather
than current state values). VHDL simulation semantics is race-
free. For consistency, both semantics require that no inputs
change on a clock edge or we could get time violations that
reflect metastability of physical implementations.

4

