
LAS System 999 calls -> forms -> map ref 
lookup -> controller (duplicate 
removal/district multiplexing) -
> division controller (vehicle 
selection) -> activation box -> 
radio: 3 minutes, 200 staff 

Problems Errors (esp. duplication) 
 Queues (esp. radio) 
 Call-backs laborious 
Initial Study £1.5m, 19 months 
 Proviso: packaged, no AVLS 
 Management forgets provisos 
Bidding Firms said proposal unrealistic 
 Lowest bidder used for £1m, 

£700k lower than the next.. 
Design 6 month timescale minuted 
 No formal meeting program or 

methodology defined 
 No full time user on project 
 Systems Options relied on 

assurances from contractors 
Implement. Phase 1 problems: lockup 
 Phase 2 problems: blackspots 

in radio, channel overload at 
shift change, inability to cope 
with established practices 
(taking “wrong” ambulance) 

 Management pressure: go live! 
 Review asking for volume 

tests, written implementation 
strategy, change control and 
training was ignored 

 System put in place in one day 
without any backup or network 
managers available 

Failure Vehicles lost track of 
 Exceptions scrolled off screen 
 Incidents held up 
 Callbacks increased workload 
 Data delays, voice congestion 
 Many or none vehicles sent 
 

“Software 
Crisis” 

Computer projects had much 
higher failure risk than others 

 “Software engineering” coined 
Why Crisis? Requirement of perfection 
 Conform with systems/ 

standards outside your control 
 Parts interact in more than 3D 
 Users demand changes 
 Hard to visualise software 
 Software is non-repeating 
 Requirements change w/ time 
 Code becomes complex 

 So high rate of bugs found at 
start and end of lifecycle 

Big System 
Problems 

Thin spread of domain 
knowledge in companies 

 Communications overhead: 
hierarchy a good idea? 

 

Metrics Requirements and testing 
account for 80% of costs 

 Typically 8KLOC / man year 
Lessons Productivity boost comes from 

using a high level language 
 Individuals vary 10x difference 
 Brooks’ Law: adding 

manpower to a late software 
project makes it later (training 
+ communication costs) 

 

Waterfall Requirements 
 Specification 
 Implementation (unit test) 
 Integration (system test) 
 Operations / maintenance 
Validation Are we building right system? 
 Feedback path in first half 
Verification Are we building it right? 
 Feedback path in second half 
Advantages Management easy (milestone) 
 Charge for req. changes (even 

make each stage a contract) 
 Conducive to good design 
Disadvanta. Applicable only where 

requirements can be defined in 
detail (e.g. compiler) 

 Reality isn’t like this: iteration 
is important where tech/law/ 
requirements/customer 
environment is changing 

 Top down quality betterment 
may be lost over the lifecycle 

 Safety critical, package 
software have objections 

 

Iteration Determine objectives/alts 
 Evaluate alts/resolve risks 
 Develop and verify prototype 
 Plan next phases 
 Fixed # of iterations 

(guarantees termination) 
 Increase cost as we spiral 
 Only use this on relevant parts 

of system? (e.g. HCI) 
 

Error Deviation from intended state 



Failure Non-performance of the 
system w/ some environment 

Fault Error -> fault -> failure 
Reliability Probability of failure in period 
Accident Unplanned event w/ loss 
Hazard Conditions leading to accident 
Redundancy Redundant hardware means 

that software is the failure site 
 Multi-version programming 

leads to programs with 
correlated errors and 
misunderstandings 

 Redundant outputs can be 
confusing to human ops. 

Automation Computer advises human 
 Computer interprets output 
 Computer interprets output 

and input from human 
 Human advises computer 
Testing Cost per bug rises at later 

stages -> remove them early 
 Change testers regularly 
 Due diligence: complying with 

standards, standard checklist, 
hire famous consultants… 

 

HLLs LOC goes further (10x) 
 Code easier to read 
 Appropriate abstraction 
 Compile time checking 
 Portability of code 
 Compilers have errors 
 Performance may be worse 
 Manages incidental complexity 
Formal 
Methods 

Forces us to be explicit and 
check designs in detail 

 Debate on value for money 
Tools For 
Management 

Activity charts, critical path 
analysis, PERT, CASE 

 Chief programmers: focused 
around a 10x productive guy, 
but team can only do so much 

 Egoless programming: code 
owned by team, not individual 

 XP: iteration, user interaction 
 LP: code designed for human 
CMM Capability Maturity Model 
 Keep team together 
 Emphasis shift to process 
 Repeatable performance 
 Debug the process 
FMEA Fault mode/effects analysis 
 List potential failures and 

describe the worst case effect 

Fault Tree Work backwards 
systematically from identified 
hazard to primary events to 
check which are critical or 
redundant 

Change 
Control 

Compatibility check between 
versions 

 


