	LAS System
	999 calls -> forms -> map ref lookup -> controller (duplicate removal/district multiplexing) -> division controller (vehicle selection) -> activation box -> radio: 3 minutes, 200 staff

	Problems
	Errors (esp. duplication)

	
	Queues (esp. radio)

	
	Call-backs laborious

	Initial Study
	£1.5m, 19 months

	
	Proviso: packaged, no AVLS

	
	Management forgets provisos

	Bidding
	Firms said proposal unrealistic

	
	Lowest bidder used for £1m, £700k lower than the next..

	Design
	6 month timescale minuted

	
	No formal meeting program or methodology defined

	
	No full time user on project

	
	Systems Options relied on assurances from contractors

	Implement.
	Phase 1 problems: lockup

	
	Phase 2 problems: blackspots in radio, channel overload at shift change, inability to cope with established practices (taking “wrong” ambulance)

	
	Management pressure: go live!

	
	Review asking for volume tests, written implementation strategy, change control and training was ignored

	
	System put in place in one day without any backup or network managers available

	Failure
	Vehicles lost track of

	
	Exceptions scrolled off screen

	
	Incidents held up

	
	Callbacks increased workload

	
	Data delays, voice congestion

	
	Many or none vehicles sent


	“Software Crisis”
	Computer projects had much higher failure risk than others

	
	“Software engineering” coined

	Why Crisis?
	Requirement of perfection

	
	Conform with systems/ standards outside your control

	
	Parts interact in more than 3D

	
	Users demand changes

	
	Hard to visualise software

	
	Software is non-​repeating

	
	Requirements change w/ time

	
	Code becomes complex

	
	So high rate of bugs found at start and end of lifecycle

	Big System Problems
	Thin spread of domain knowledge in companies

	
	Communications overhead: hierarchy a good idea?


	Metrics
	Requirements and testing account for 80% of costs

	
	Typically 8KLOC / man year

	Lessons
	Productivity boost comes from using a high level language

	
	Individuals vary 10x difference

	
	Brooks’ Law: adding manpower to a late software project makes it later (training + communication costs)


	Waterfall
	Requirements

	
	Specification

	
	Implementation (unit test)

	
	Integration (system test)

	
	Operations / maintenance

	Validation
	Are we building right system?

	
	Feedback path in first half

	Verification
	Are we building it right?

	
	Feedback path in second half

	Advantages
	Management easy (milestone)

	
	Charge for req. changes (even make each stage a contract)

	
	Conducive to good design

	Disadvanta.
	Applicable only where requirements can be defined in detail (e.g. compiler)

	
	Reality isn’t like this: iteration is important where tech/law/ requirements/customer environment is changing

	
	Top down quality betterment may be lost over the lifecycle

	
	Safety critical, package software have objections


	Iteration
	Determine objectives/alts

	
	Evaluate alts/resolve risks

	
	Develop and verify prototype

	
	Plan next phases

	
	Fixed # of iterations (guarantees termination)

	
	Increase cost as we spiral

	
	Only use this on relevant parts of system? (e.g. HCI)


	Error
	Deviation from intended state

	Failure
	Non-performance of the system w/ some environment

	Fault
	Error -> fault -> failure

	Reliability
	Probability of failure in period

	Accident
	Unplanned event w/ loss

	Hazard
	Conditions leading to accident

	Redundancy
	Redundant hardware means that software is the failure site

	
	Multi-version programming leads to programs with correlated errors and misunderstandings

	
	Redundant outputs can be confusing to human ops.

	Automation
	Computer advises human

	
	Computer interprets output

	
	Computer interprets output and input from human

	
	Human advises computer

	Testing
	Cost per bug rises at later stages -> remove them early

	
	Change testers regularly

	
	Due diligence: complying with standards, standard checklist, hire famous consultants…


	HLLs
	LOC goes further (10x)

	
	Code easier to read

	
	Appropriate abstraction

	
	Compile time checking

	
	Portability of code

	
	Compilers have errors

	
	Performance may be worse

	
	Manages incidental complexity

	Formal Methods
	Forces us to be explicit and check designs in detail

	
	Debate on value for money

	Tools For Management
	Activity charts, critical path analysis, PERT, CASE

	
	Chief programmers: focused around a 10x productive guy, but team can only do so much

	
	Egoless programming: code owned by team, not individual

	
	XP: iteration, user interaction

	
	LP: code designed for human

	CMM
	Capability Maturity Model

	
	Keep team together

	
	Emphasis shift to process

	
	Repeatable performance

	
	Debug the process

	FMEA
	Fault mode/effects analysis

	
	List potential failures and describe the worst case effect

	Fault Tree
	Work backwards systematically from identified hazard to primary events to check which are critical or redundant

	Change Control
	Compatibility check between versions


