Design Methodologies
Waterfall
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Centred
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XP

UML

Use Case

Seller
of Computer

Class

Requirements (user language)
Specification (system language)
Implementation / unit testing
(checks units against spec)
Integration / system testing (checks
requirements met)

Operations and maintenance

Plan (requirements, feedback)
Determine objectives / alternatives
Evaluate alternative / risks (prototype)
Develop / verify (code / test / integrate)
Design a shared conceptual model
of the system with the user
Anthropology (interview users etc)
Collaborate to decide what to solve
System mock ups / talk-through
CRC (responsibility & collaborators)
Program structure in terms of data
Pair programming, agile, get
feedback from users ASAP
Refactor the design when
requirements change

Describe the human activity
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Collaboration

Interaction diagrams focusing

on the roles of objects
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Sequence

Interaction diagrams focusing

on the time at which
messages are sent between

objects
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~ Shows how object activities

are dependent (flowchart)

swimlane

(_Enter amount

o fork

Take money from slat ——

Join

Customer ATM Machine “Bank
«— start
activity
» ¥
C Enter pin (" Authorize guard expression

branch -
panspg XS Iweligpig

‘ {" Check account balance

[halarfce == amaunt] % [balance = amount]

Debit account

Show balance

merge Ty

R

Statechart

Show object lifecycle and

internal state transitions
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Component Dependencies between
components (could include
web pages, EXEs, DLLs etc.)

Deployment Location of components that
make a complete system

Bank Server

Mortgage

Real Estate Server
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Object Design
Information Hiding

Loose Coupling
Cohesion
Abstract Types

Modularization

Method Classification
Responsibility
Defensiveness

Correctness
Typing

Formal Models

Patterns
Testing
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Expose minimum interface
No implementation details
Minimize object joins

"1 method does 1 thing”
Hide implementation
Interface as specification
Separate building / testing
Helps code reuse

Divide work between teams
Change localisation
Mutator and accessor
Classes manipulate own data
Performance/redundancy
tradeoff w/ multiple check
How to deal with failure?
Exceptions can enforce this
Attempt error avoidance

Strong typing can catch
errors at compile time
Variable “taxonomy”
Define program element

If precondition holds then
execution means the
postcondition holds
Composition possible
Force fine level analysis
Static checking / verification
Alternative (declarative) perspective
Specialist (Greek letters!)
LOD similar to that of code
Reusable approaches
Regressions / unit tests



