Design Methodologies
Waterfall

Spiral

User-
Centred

JSP
XP

UML

Use Case

Seller
of Computer

Class

Requirements (user language)
Specification (system language)
Implementation / unit testing
(checks units against spec)
Integration / system testing (checks
requirements met)

Operations and maintenance

Plan (requirements, feedback)
Determine objectives / alternatives
Evaluate alternative / risks (prototype)
Develop / verify (code / test / integrate)
Design a shared conceptual model
of the system with the user
Anthropology (interview users etc)
Collaborate to decide what to solve
System mock ups / talk-through
CRC (responsibility & collaborators)
Program structure in terms of data
Pair programming, agile, get
feedback from users ASAP
Refactor the design when
requirements change

Describe the human activity
that the system has to support
Focal point of discussion

System of goods selling via catalogs

Prow de customer
wth infarmation '
«lnclude»
—_— . e

Make order of
computer

Agree with payment
terms

Order goods fram
envemory

«lnclude»

«lnclude»

| ——1

Customer

\ ?
Y
!
\
«extends
1

\
\
Order goods
catalog

Customer
of computer

Shows classes & relationships

Customer Order
name 1 0.* | date
address status
assaciation -, calcTax
) calcTotal
—> Payment *
abstract class i g ¥ 1 caeTs
amount 7
role name —
neralization _
3 - ’lﬁ line ftem | 1.7 +— muftPirtv
[I | OrderDetail ttem < class name
Credit Cash Check ; \ -
guantity shippingieight .
attributes
umber cashTendsred | | name taxstatus description
e hankiD
expDats caleSubTotal getPriceF orQuantity
autharized calewieight \ getveight < operations
autharized
\ navigability

Collaboration

Interaction diagrams focusing

on the roles of objects

window:Userinterface

-~ message
¥
{]1 1: makeReservation()vaid

aChain:HotelChain
< object

&1 A1 makeReservation(vaid

[~ sequence number
¥ — -
1.1.1.2{isRoom] —t= |aReservation:Reservation | ; ; 5 4

aHotelHotel

aNatice:Confirmation

iteration < self link

1.1.1.1:*for each day] isRoom:=availablad:boolean —=

Sequence

Interaction diagrams focusing

on the time at which
messages are sent between

objects

HotelChain Hatel

object 4

window
Userinterface

keR ationovoid

iteration

¥ condition

*[for each day] isRoom:=available(;hoolean

[isRoom]

aReservation
Reseniation

aMotice
Confirmation

creation 2_7 |

MCE-\

N

If a room is availahle for

B¢ deletion ka |
—

— lifetine

confirmation,

Activity

|
| each day of the stay, make |
areservation and send a }

|

~ Shows how object activities

are dependent (flowchart)

swimlane

(_Enter amount

o fork

Take money from slat ——

Join

Customer ATM Machine “Bank
«— start
activity
» ¥
C Enter pin (" Authorize guard expression

branch -
panspg XS Iweligpig

‘ {" Check account balance

[halarfce == amaunt] % [balance = amount]

Debit account

Show balance

merge Ty

R

Statechart

Show object lifecycle and

internal state transitions

fnitial

Rejecting

£
CancelfGuit

Getling 55N

RetryiClear 5N, PIN entrles

[notwalid)/Display error message

final state
g Validating
palid)Start transaction | 223193t SSN ar”” FI submit
~ action

submit

Press tah OR move cursor to PIN
fieldiCursor to PIN

Getting PIN

state

ICursorto S5M

event guard activity

Press Rey[keyt tab]tD\spéy key

transition—"" | | Press shifttab OR move cursorto
SEM fieldiCursor to 55N

state

Press keylkey = shift-tabliDisplaydot

Component Dependencies between
components (could include
web pages, EXEs, DLLs etc.)

Deployment Location of components that
make a complete system

Bank Server

Mortgage

Real Estate Server

_______ —¥

interface ~IMengageAppiication

Listi
lsting =«Storages=

— —Z= MultipleListings

\- component

IListing

M
|
|
|

Object Design
Information Hiding

Loose Coupling
Cohesion
Abstract Types

Modularization

Method Classification
Responsibility
Defensiveness

Correctness
Typing

Formal Models

Patterns
Testing

TCRIP % Buyerinterface TCRIP

ke ~—— dependency

— connection

akc -~
= -

Expose minimum interface
No implementation details
Minimize object joins

"1 method does 1 thing”
Hide implementation
Interface as specification
Separate building / testing
Helps code reuse

Divide work between teams
Change localisation
Mutator and accessor
Classes manipulate own data
Performance/redundancy
tradeoff w/ multiple check
How to deal with failure?
Exceptions can enforce this
Attempt error avoidance

Strong typing can catch
errors at compile time
Variable “taxonomy”
Define program element

If precondition holds then
execution means the
postcondition holds
Composition possible
Force fine level analysis
Static checking / verification
Alternative (declarative) perspective
Specialist (Greek letters!)
LOD similar to that of code
Reusable approaches
Regressions / unit tests

