
Design Methodologies 
Waterfall Requirements (user language) 
 Specification (system language) 
 Implementation / unit testing 

(checks units against spec) 
 Integration / system testing (checks 

requirements met) 
 Operations and maintenance 
Spiral Plan (requirements, feedback) 
 Determine objectives / alternatives 
 Evaluate alternative / risks (prototype) 

 Develop / verify (code / test / integrate) 

User-
Centred 

Design a shared conceptual model 
of the system with the user 

 Anthropology (interview users etc) 
 Collaborate to decide what to solve 
 System mock ups / talk-through 
 CRC (responsibility & collaborators) 
JSP Program structure in terms of data 
XP Pair programming, agile, get 

feedback from users ASAP 

 Refactor the design when 
requirements change 

 
UML 
Use Case Describe the human activity 

that the system has to support 
 Focal point of discussion 

 
Class Shows classes & relationships 

 

Collaboration Interaction diagrams focusing 
on the roles of objects 

 
Sequence Interaction diagrams focusing 

on the time at which 
messages are sent between 
objects 

 
Activity Shows how object activities 

are dependent (flowchart) 

 
Statechart Show object lifecycle and 

internal state transitions 

 



Component Dependencies between 
components (could include 
web pages, EXEs, DLLs etc.) 

Deployment Location of components that 
make a complete system 

 
 
Object Design 
Information Hiding Expose minimum interface 
 No implementation details 
Loose Coupling Minimize object joins 
Cohesion “1 method does 1 thing” 
Abstract Types Hide implementation 
 Interface as specification 
Modularization Separate building / testing 
 Helps code reuse 
 Divide work between teams 
 Change localisation 
Method Classification Mutator and accessor 
Responsibility Classes manipulate own data 

Defensiveness Performance/redundancy 
tradeoff w/ multiple check 

 How to deal with failure? 
 Exceptions can enforce this 
 Attempt error avoidance 
 

Correctness 
Typing Strong typing can catch 

errors at compile time 
 Variable “taxonomy” 
Formal Models Define program element 
 If precondition holds then 

execution means the 
postcondition holds 

 Composition possible 
 Force fine level analysis 
 Static checking / verification 
 Alternative (declarative) perspective 

 Specialist (Greek letters!) 
 LOD similar to that of code 
Patterns Reusable approaches 
Testing Regressions / unit tests 
 


