Design Methodologies
	Waterfall
	Requirements (user language)

	
	Specification (system language)

	
	Implementation / unit testing (checks units against spec)

	
	Integration / system testing (checks requirements met)

	
	Operations and maintenance

	Spiral
	Plan (requirements, feedback)

	
	Determine objectives / alternatives

	
	Evaluate alternative / risks (prototype)

	
	Develop / verify (code / test / integrate)

	User-Centred
	Design a shared conceptual model of the system with the user

	
	Anthropology (interview users etc)

	
	Collaborate to decide what to solve

	
	System mock ups / talk-through

	
	CRC (responsibility & collaborators)

	JSP
	Program structure in terms of data

	XP
	Pair programming, agile, get feedback from users ASAP

	
	Refactor the design when requirements change

UML

	Use Case
	Describe the human activity that the system has to support

	
	Focal point of discussion

	[image: image1.png]Seller
of Computer

System of goods selling via catalogs

(aaree vith payment
tems
Frovice customer. Brcer goods fom
vithinformation envertory

«ncies
unc\ude» unc\ude»
T
\
\
sextends
i

\
Thake order of \
compater Grer goods
catalog

4

Customer

f
A

Customer
of compuer

	Class
	Shows classes & relationships

	[image: image2.png]Customer Order
name 0. | gate
adcress L staus
association | calcTax
calcTotal
abstract class— |7 PO | 1 > | calcTotalweight
amount 7
role name-
neralizaion -
- > ling tem | 1. maltiplicity
[OrderDetail Wom <] class name
Credit Cash Checkc o p—
quan shippingieig)
. | attributes
nurmer castiTendered | | name s o descripton |
tve bankD
expbate caleSubTotal getPriceF orQuantity
authorized caleweight getweight <—{— operations
autnorized
navigability

	Collaboration
	Interaction diagrams focusing on the roles of objects

	[image: image3.png]window:UserInterface

escse

[«—— object

sequence number

aReservation:Reservation aNotice:Confirmation

111 ZfisRoom] —= 11121

iteration < self link

1.1.1.17{for each day] isRoom =available(rboolean —=

	Sequence
	Interaction diagrams focusing on the time at which messages are sent between objects

	[image: image4.png]object ——>|

‘window

aChain
HotelChain

aHotel
Hotel

Userlnterface

makeResenvation)void

A mesege

l«— deletion

1
R etne —>|

makeResenvation)void

activation bar

- condition
[ERoom]

for each day] isRoom:

‘2Reservation

Reservation

aeatin?_]
—

wailable(:boolean

‘aNotice
Confirmation

	Activity
	Shows how object activities are dependent (flowchart)

	[image: image5.png]swimlane

Custamer

&<« start

(Cinsertcard)

ATW Waching

—

Authorize

activi
x
(CEreram

vy N

(Enter amourt

balay

| fork

(Take moneyfrom siof_y—1

Join

Debit account

Check account balance

fce »= amount] % [balance < amoun]

suard expression|

nvalig PIN

(Show balance)

merze—y

(Ejectcard

(Take cara)

® «—end

	Statechart
	Show object lifecycle and internal state transitions

	[image: image6.png]@ initial state

Joursarto 88N

%ﬁrsw
Cancelauit event guard activity

RetryiClear SN, PIN snies

Fress keylkey|= tah]/D\spgv key

[notvalid)Display error message submit X
7| | Press shifttab OR move cursarta
8N fieldiCursor to 58N

transition

final state

state

Press tab OR move cursor to PIN|

feld/Cursar to PIN
Gefing P Y
& "~ Vaiidaiing
[— aj"“ PN subrt |SE—
action

Press keylkey

shifitabliDisplaydot

	Component
	Dependencies between components (could include web pages, EXEs, DLLs etc.)

	Deployment
	Location of components that make a complete system

	[image: image7.png]<<Datahases>
CustomerDB

| E—

Bank Semer Feal Estate Semer
R —
Wortgage Application g]
Eﬁ Eﬁ Listing <<Slorage=
— > MultipleListings
]
— 4/>© @ | C—
interface \Mn'\uauew‘ma“ﬂ" IListing
t Va v
| node
-
| . T dependency
— connection
arc_- e
ToPiP [Buerinerice | ToPiP

Object Design
	Information Hiding
	Expose minimum interface

	
	No implementation details

	Loose Coupling
	Minimize object joins

	Cohesion
	“1 method does 1 thing”

	Abstract Types
	Hide implementation

	
	Interface as specification

	Modularization
	Separate building / testing

	
	Helps code reuse

	
	Divide work between teams

	
	Change localisation

	Method Classification
	Mutator and accessor

	Responsibility
	Classes manipulate own data

	Defensiveness
	Performance/redundancy tradeoff w/ multiple check

	
	How to deal with failure?

	
	Exceptions can enforce this

	
	Attempt error avoidance

Correctness
	Typing
	Strong typing can catch errors at compile time

	
	Variable “taxonomy”

	Formal Models
	Define program element

	
	If precondition holds then execution means the postcondition holds

	
	Composition possible

	
	Force fine level analysis

	
	Static checking / verification

	
	Alternative (declarative) perspective

	
	Specialist (Greek letters!)

	
	LOD similar to that of code

	Patterns
	Reusable approaches

	Testing
	Regressions / unit tests

