
Operational
Semantics ',; ',;

',',

2121

11

seesee

sese

 (e.g.)

'',,

'',',',,

21

2211

snsee

snsesnse

(where n = n1 + n2) (e.g.)
Run Time
Errors

Trapped: cause execution to
halt immediately (e.g. raising a
top-level exception)

 Untrapped: may go unnoticed
for a while and cause
problems later (e.g. array out
of bounds errors)

Safety Language is safe if no
untrapped errors can occur

Typing Te : , assumptions Γ

unit::

int:eintref)(

el

l

 (e.g.)

Determinacy If 11,, sese , 22 ,, sese

then 2211 ,, sese

Progress If Te : ,)()(sdomdom

then e is a value or exists

some ',', sese

Type
Preservation

If Te : ,)()(sdomdom ,

',', sese then Te :'

and)'()(sdomdom

Safety If Te : ,)()(sdomdom ,

','*, sese then either e’ is

a value or '',''',' sese

Typeability Given Γ and e, find T such that

Te : is derivable or show

that there is no such T
Type
Checking

Given Γ, e and T, decide
whether Te : is right

Type
Uniqueness

If Te : and ':Te then

T = T’

Alpha
Conversion

Maps symbols to variables in
memory (applies scoping)

 A variable is free in an
expression if it is not inside
any (fn x:T => …)

 Convention: we can replace
the symbol for a variable at
any time in its binding location
as long as we change the
symbol at the binding sites at
the same time (a-equivalence)

 Implement this with pointers /

De Bruijn indices (the number
of fn nodes you must traverse
to reach the binder)

Substitution {e/x}e’ is the result of
substituting e for all free
occurrences of x in e’

Call By
Value

Evaluate left to right and
parameter before application

Call By
Name

Reduce left hand side until it is
a function, then immediately
substitute the parameter

Call By Need As call by name, but the result
of evaluating the parameter is
cached for future usages

Full Beta Allow both sides of an
application to reduce,
immediately apply a function
to its parameter if possible
(like call by name), allow
reduction INSIDE functions

Recursion Implement this by “let val rec”
 Operational semantics unroll

the function one step and “let”
the recursive function into the
body of the function again

Products T ::= …| T1 * T2
 e ::= …| (e1, e2) | #1 e | #2 e
Sums T ::= …| T1 + T2
 e ::= …| inl e:T | inr e:T |

(case e of inl (x1:T1) => e1 |
inr (x2:T2) => e2)

 Need annotation because inl
3:(int + int and int + bool)

Records Generalise products w/ labels
 T ::= …| {lab1:T1,…,labk:Tk}
 e ::= …| {lab1 = e1,…,labk=ek}

| #lab e
 Note that labels are unique

within our expressions, types
References T ::= …| T ref
 Tloc ::= …| T ref
 e ::= …| e1 := e2 | !e | ref e | l
 Must now type check the store

in a more elaborate way than
just)'()(sdomdom :

 s if)(sdoml :

T:s(l)ref)(.. TlT

 Type preservation now must
ensure the store is typeable
and that we extend the type
assumptions after reduction by

some Γ’ with disjoint domain

Subtyping Can add a subtype relation
using record types from L3

TT :
,

'':

'':'':

TT

TTTT

 Allow subtyping within record
fields, forget fields on the right
and reorder fields in records

 Functions are contravariant on
the left of and covariant on

the right of :

'':

'::'

2121

2211

TTTT

TTTT

 Can’t allow type relationships
or references because we
could assign an inappropriate
supertype / access an
inappropriate subtype

 Could add a downcast
operator, but would require a
dynamic type check for safety

Objects Can now do classes and
objects using records!

 Classes are a set of methods
take a Representation record
and access fields from it to
manipulate its data (stored as
refs if it is mutable)

 Build constructors that return
records of the right type

 Can now reuse method code

with subtyped records

Semantic
Equivalence

Equivalent either if the two
expressions reduce forever or
if they reduce to the same
value and store: this has the
congruence property

Congruence Congruent if whenever e1 e2

you have that for all contexts
C and T’, if ':][1 TeC and

':][2 TeC then][][21 eCeC

Threading T ::= …| proc
 e ::= …| e1|e2
 Now in the type rules let

anything that returns a unit
become a proc (process) and let
two proc be | together

 In the operational semantics
allow reductions to happen on
each side of |: non-determinism

 Note that things like assignment
and dereferencing are atomic
(unlike real hardware?)

Mutexes Add M (a partial function from
mutex names to Booleans):
mutex state to configurations

 e ::= …| lock m | unlock m
 Define atomic transitions for

these operations that change
the mutex state and block if a
mutex is currently held

