Operational Semantics	$\frac{\langle e_{1}, s \rangle \rightarrow \langle e_{1}', s' \rangle}{\langle e_{1}; e_{2}, s \rangle \rightarrow \langle e_{1}'; e_{2}, s' \rangle} \text{ (e.g.)}$ $\frac{\langle e_{1}, s \rangle \Downarrow \langle n_{1}, s' \rangle \langle e_{2}, s' \rangle \Downarrow \langle n_{2}, s'' \rangle}{\langle e_{1} + e_{2}, s \rangle \Downarrow \langle n, s'' \rangle}$ $\text{(where } n = n_{1} + n_{2} \text{) (e.g.)}$	Substitution	De Bruijn indices (the number of fn nodes you must traverse to reach the binder) {e/x}e' is the result of substituting e for all free occurrences of x in e'
Run Time Errors	Trapped: cause execution to halt immediately (e.g. raising a top-level exception) Untrapped: may go unnoticed for a while and cause problems later (e.g. array out	Call By Value Call By Name	Evaluate left to right and parameter before application Reduce left hand side until it is a function, then immediately substitute the parameter
Safety	of bounds errors) Language is safe if no untrapped errors can occur	Call By Need Full Beta	As call by name, but the result of evaluating the parameter is cached for future usages Allow both sides of an
Typing	$\frac{\Gamma \succ e: T \text{, assumptions } \Gamma}{\frac{\Gamma(l) = \text{intref}}{\Gamma \succ e: \text{int}}} \text{ (e.g.)}$		application to reduce, immediately apply a function to its parameter if possible
	If $\langle e, s \rangle \rightarrow \langle e_1, s_1 \rangle$, $\langle e, s \rangle \rightarrow \langle e_2, s_2 \rangle$ then $\langle e_1, s_1 \rangle = \langle e_2, s_2 \rangle$	Recursion	(like call by name), allow reduction INSIDE functions
Progress	If $\Gamma \succ e : T$, $dom(\Gamma) \subseteq dom(s)$ then e is a value or exists some $\langle e, s \rangle \rightarrow \langle e', s' \rangle$	Recursion	Implement this by "let val rec" Operational semantics unroll the function one step and "let" the recursive function into the
Type Preservation	If $\Gamma \succ e : T$, $dom(\Gamma) \subseteq dom(s)$, $\langle e, s \rangle \rightarrow \langle e', s' \rangle$ then $\Gamma \succ e': T$ and $dom(\Gamma) \subseteq dom(s')$	Products	body of the function again T ::= $T_1 * T_2$ e ::= (e_1 , e_2) #1 e #2 e
Safety	If $\Gamma \succ e : T$, $dom(\Gamma) \subseteq dom(s)$, $\langle e, s \rangle \rightarrow * \langle e', s' \rangle$ then either e' is a value or $\langle e', s' \rangle \rightarrow \langle e'', s'' \rangle$	Sums	T ::= $T_1 + T_2$ e ::= inl e:T inr e:T (case e of inl (x_1 :T ₁) => e_1 inr (x_2 :T ₂) => e_2)
Typeability	Given Γ and e, find T such that $\Gamma \succ e: T$ is derivable or show that there is no such T	Records	Need annotation because inl 3:(int + int and int + bool) Generalise products w/ labels T ::= {lab ₁ :T ₁ ,,lab _k :T _k }
Type Checking Type Uniqueness	Given Γ , e and T, decide whether $\Gamma \succ e:T$ is right If $\Gamma \succ e:T$ and $\Gamma \succ e:T'$ then T = T'		<pre>e ::= {lab1 = e1,,labk=ek} #lab e Note that labels are unique within our expressions, types</pre>
Alpha Conversion	Maps symbols to variables in memory (applies scoping) A variable is free in an expression if it is not inside any (fn x:T =>) Convention: we can replace the symbol for a variable at any time in its binding location as long as we change the symbol at the binding sites at the same time (a-equivalence) Implement this with pointers /	References	Within our expressions, types $T ::= T ref$ $T_{loc} ::= T ref$ $e ::= e_1 := e_2 !e ref e $ Must now type check the store in a more elaborate way than just $dom(\Gamma) \subseteq dom(s')$: $\Gamma \succ s \text{ if } \forall l \in dom(s)$: $\exists T.\Gamma(l) = T ref \land \Gamma \succ s(l) : T$ Type preservation now must ensure the store is typeable and that we extend the type assumptions after reduction by

some Γ' with disjoint domain

Subtyping

Objects

Can add a subtype relation
using record types from L3
$T \ll T' T' \ll T''$

 $\overline{T \lt: T}'$ $T \lt: T''$

Allow subtyping within record fields, forget fields on the right and reorder fields in records Functions are contravariant on the left of \Box and covariant on the right of \Box :

$$\frac{T_1' <: T_1 \quad T_2 <: T_2'}{T_1 \rightarrow T_2 <: T_1' \rightarrow T_2'}$$

Can't allow type relationships or references because we could assign an inappropriate supertype / access an inappropriate subtype Could add a downcast operator, but would require a dynamic type check for safety Can now do classes and objects using records! Classes are a set of methods take a Representation record and access fields from it to manipulate its data (stored as refs if it is mutable) Build constructors that return records of the right type Can now reuse method code with subtyped records ③

Semantic	Equivalent either if the two
Equivalence	expressions reduce forever or
	if they reduce to the same
	value and store: this has the
	congruence property
Congruence	Congruent if whenever $e_1 > e_2$
	you have that for all contexts
	C and T', if $\Gamma \succ C[e_1]: T'$ and
	$\Gamma \succ C[e_2]: T'$ then $C[e_1] \approx C[e_2]$

Threading T ::= ...| proc e ::= ...| e₁|e₂ Now in the type rules let anything that returns a unit become a proc (process) and let two proc be | together In the operational semantics allow reductions to happen on each side of |: non-determinism **Mutexes**

Note that things like assignment and dereferencing are atomic (unlike real hardware?) Add M (a partial function from mutex names to Booleans): mutex state to configurations e ::= ...| lock m | unlock m Define atomic transitions for these operations that change the mutex state and block if a mutex is currently held