	Operational Semantics
	
[image: image1.wmf]'

,

;

'

,

;

'

,

'

,

2

1

2

1

1

1

s

e

e

s

e

e

s

e

s

e

®

®

 (e.g.)

	
	
[image: image2.wmf]'

'

,

,

'

'

,

'

,

'

,

,

2

1

2

2

1

1

s

n

s

e

e

s

n

s

e

s

n

s

e

ß

+

ß

ß

(where n = n1 + n2) (e.g.)

	Run Time Errors
	Trapped: cause execution to halt immediately (e.g. raising a top-level exception)

	
	Untrapped: may go unnoticed for a while and cause problems later (e.g. array out of bounds errors)

	Safety
	Language is safe if no untrapped errors can occur

	Typing
	
[image: image3.wmf]T

e

:

f

G

, assumptions Γ

	
	
[image: image4.wmf]unit

:

:

int

:

e

intref

)

(

e

l

l

=

G

G

=

G

f

f

 (e.g.)

	Determinacy
	If
[image: image5.wmf]1

1

,

,

s

e

s

e

®

,
[image: image6.wmf]2

2

,

,

s

e

s

e

®

 then
[image: image7.wmf]2

2

1

1

,

,

s

e

s

e

=

	Progress
	If
[image: image8.wmf]T

e

:

f

G

,
[image: image9.wmf])

(

)

(

s

dom

dom

Í

G

 then e is a value or exists some
[image: image10.wmf]'

,

'

,

s

e

s

e

®

	Type Preservation
	If
[image: image11.wmf]T

e

:

f

G

,
[image: image12.wmf])

(

)

(

s

dom

dom

Í

G

,
[image: image13.wmf]'

,

'

,

s

e

s

e

®

 then
[image: image14.wmf]T

e

:

'

f

G

 and
[image: image15.wmf])

'

(

)

(

s

dom

dom

Í

G

	Safety
	If
[image: image16.wmf]T

e

:

f

G

,
[image: image17.wmf])

(

)

(

s

dom

dom

Í

G

,
[image: image18.wmf]'

,

'

*

,

s

e

s

e

®

 then either e’ is a value or
[image: image19.wmf]'

'

,

'

'

'

,

'

s

e

s

e

®

	Typeability
	Given Γ and e, find T such that
[image: image20.wmf]T

e

:

f

G

 is derivable or show that there is no such T

	Type Checking
	Given Γ, e and T, decide whether
[image: image21.wmf]T

e

:

f

G

 is right

	Type Uniqueness
	If
[image: image22.wmf]T

e

:

f

G

 and
[image: image23.wmf]'

:

T

e

f

G

 then T = T’

	Alpha Conversion
	Maps symbols to variables in memory (applies scoping)

	
	A variable is free in an expression if it is not inside any (fn x:T => …)

	
	Convention: we can replace the symbol for a variable at any time in its binding location as long as we change the symbol at the binding sites at the same time (a-equivalence)

	
	Implement this with pointers / De Bruijn indices (the number of fn nodes you must traverse to reach the binder)

	Substitution
	{e/x}e’ is the result of substituting e for all free occurrences of x in e’

	Call By Value
	Evaluate left to right and parameter before application

	Call By Name
	Reduce left hand side until it is a function, then immediately substitute the parameter

	Call By Need
	As call by name, but the result of evaluating the parameter is cached for future usages

	Full Beta
	Allow both sides of an application to reduce, immediately apply a function to its parameter if possible (like call by name), allow reduction INSIDE functions

	Recursion
	Implement this by “let val rec”

	
	Operational semantics unroll the function one step and “let” the recursive function into the body of the function again

	Products
	T ::= …| T1 * T2

	
	e ::= …| (e1, e2) | #1 e | #2 e

	Sums
	T ::= …| T1 + T2

	
	e ::= …| inl e:T | inr e:T | (case e of inl (x1:T1) => e1 | inr (x2:T2) => e2)

	
	Need annotation because inl 3:(int + int and int + bool)

	Records
	Generalise products w/ labels

	
	T ::= …| {lab1:T1,…,labk:Tk}

	
	e ::= …| {lab1 = e1,…,labk=ek} | #lab e

	
	Note that labels are unique within our expressions, types

	References
	T ::= …| T ref

	
	Tloc ::= …| T ref

	
	e ::= …| e1 := e2 | !e | ref e | l

	
	Must now type check the store in a more elaborate way than just
[image: image24.wmf])

'

(

)

(

s

dom

dom

Í

G

:

	
	
[image: image25.wmf]s

f

G

if
[image: image26.wmf])

(

s

dom

l

Î

"

:
[image: image27.wmf]T

:

s(l)

ref

)

(

.

.

f

G

Ù

=

G

$

T

l

T

	
	Type preservation now must ensure the store is typeable and that we extend the type assumptions after reduction by some Γ’ with disjoint domain

	Subtyping
	Can add a subtype relation using record types from L3

	
	
[image: image28.wmf]T

T

:

<

,
[image: image29.wmf]'

'

:

'

'

:

'

'

:

T

T

T

T

T

T

<

<

<

	
	Allow subtyping within record fields, forget fields on the right and reorder fields in records

	
	Functions are contravariant on the left of (and covariant on the right of (:
[image: image30.wmf]'

'

:

'

:

:

'

2

1

2

1

2

2

1

1

T

T

T

T

T

T

T

T

®

<

®

<

<

	
	Can’t allow type relationships or references because we could assign an inappropriate supertype / access an inappropriate subtype

	
	Could add a downcast operator, but would require a dynamic type check for safety

	Objects
	Can now do classes and objects using records!

	
	Classes are a set of methods take a Representation record and access fields from it to manipulate its data (stored as refs if it is mutable)

	
	Build constructors that return records of the right type

	
	Can now reuse method code with subtyped records (

	Semantic Equivalence
	Equivalent either if the two expressions reduce forever or if they reduce to the same value and store: this has the congruence property

	Congruence
	Congruent if whenever e1 (e2 you have that for all contexts C and T’, if
[image: image31.wmf]'

:

]

[

1

T

e

C

f

G

 and
[image: image32.wmf]'

:

]

[

2

T

e

C

f

G

then
[image: image33.wmf]]

[

]

[

2

1

e

C

e

C

»

	Threading
	T ::= …| proc

	
	e ::= …| e1|e2

	
	Now in the type rules let anything that returns a unit become a proc (process) and let two proc be | together

	
	In the operational semantics allow reductions to happen on each side of |: non-determinism

	
	Note that things like assignment and dereferencing are atomic (unlike real hardware?)

	Mutexes
	Add M (a partial function from mutex names to Booleans): mutex state to configurations

	
	e ::= …| lock m | unlock m

	
	Define atomic transitions for these operations that change the mutex state and block if a mutex is currently held

_1226920164.unknown

_1226923434.unknown

_1226926090.unknown

_1226926222.unknown

_1226927001.unknown

_1226927021.unknown

_1226926979.unknown

_1226926105.unknown

_1226925703.unknown

_1226925781.unknown

_1226925585.unknown

_1226920254.unknown

_1226921434.unknown

_1226920227.unknown

_1226920099.unknown

_1226920163.unknown

_1226919903.unknown

_1226920094.unknown

_1226919974.unknown

_1226919707.unknown

_1226917560.unknown

_1226917582.unknown

_1226919383.unknown

_1226917531.unknown

