
Basics
Basics Σ – Alphabet, Σ* – All possible strings

RegEx ε = match empty,  = match none

 () = precedence, * = match 0-∞

 | = match either, ccat = match both

Language } matches |{)(* ruurL 

 Equivalence of r determined by L(r)

Automata
Makeup Finite set StatesM of states

 Finite set ΣM of input symbols

 For each q  StatesM and a  ΣM, a

subset ΔM(q, a)  StatesM which can be
reached by that transition a

 Element SM  StatesM, the start state

 AcceptM  StatesM of accepting states

 DFA have the property that ΔM(q, a)
contains exactly one element, so:

),('' aqqqq M

a 

Subset
Constr.

)}.(|{

}|{

)}'),(.(|'{),(

}|{

MPM

PM

MPM

MPM

MPM

AcceptqSqStatesS

Accept

qSqS

qaqSqqaS

StatesSSStates















Kleene’s Theorem
Regularity L is regular iff it’s the set of strings

accepted by some DFA

For any regular expression r, L(r) is regular
Symbol

Empty

Nothing

Union of
M1 and M2

Concat of
M1 and M2

Star of M

Every regular language is of the form L(r)

Lemma Given an NFA M, for each subset Q 
StatesM, there is a regular expression
rq,q’

Q satisfying:

Q}in states teintermedia allwith

 Min '|{)(*

', qqurL u

M

Q

qq 

Prove By }{\

',

}{\

,

}{\

,

}{\

',
0

0

0

00

0

0

0 *)(|
qQ

qq

qQ

qq

qQ

qq

qQ

qq rrrrr 

Corollary Regular expressions have
complements (find DFA, invert it, find
expression)

The Pumping Lemma
For every regular language L there is a number l ≥

1 such that all w  L can be expressed as w =
u1vu2 where:

 Length(v) ≥ 1

 Length(u1v) ≤ l

 For all n ≥ 0 u1vnu2  L

Prove By Considering the # of state transitions
as compared to the # of states

Acceptance
If a DFA M accepts any string at all, it accepts one
whose length is less than the number of states in M

Prove By Similarly to the pumping lemma

Corollary We can test two expressions r1, r2 for
equivalence:

 r1=r2  L(r1&~r2) = L(r2&~r1) = 0

 And by this lemma there are only
finitely many possible strings to check

Grammars
Components Terminals, non-terminals

Derivations Non-terminalstring of both

BNF Non-terminal ::= possible | possible

Regularity All regular languages are context-

free (qaq’ iff transition is in M)

 Context free grammar is regular iff
all productions are of the form:

 xuy or xu

 For u being a string of terminals
and x and y both non-terminals

 The NFA you can build from this as
the logically reverse process from
the method by which regular
languages are made context free

2
ε

ε
M 1

1 2 3
ε ε

M1 M2

1

2

3

ε

ε

M1

M2

1

1

1 2
a

