Basics
Basics > — Alphabet, 2* — All possible strings
RegEx € = match empty, @ = match none
() = precedence, * = match 0-co0
| = match either, ccat = match both
Language L(r) ={u X" |umatches r}
Equivalence of r determined by L(r)

Automata
Makeup  Finite set Statesw of states
Finite set v of input symbols
For each q € Statesw and a € 2u, a
subset Aw(q, @) < Statesm which can be
reached by that transition a
Element Su e Statesy, the start state
Acceptm < Statesm of accepting states
DFA have the property that Aum(q, a)
contains exactly one element, so:
q——>q'<q'=9,(d,a)
Subset States,,, ={S| S < States,, }
CoNStr- 5,y (5,8) ={a'| Ja £ S.(Ay (@.2) = )}
SPM :{q | SM —g>q}
Accept;,, =

{S e States;,, | 3q € S.(q € Accept,, )}

Kleene’s Theorem

Regularity L is regular iff it's the set of strings
accepted by some DFA

For any regular expression r, L(r) is regular

~O-0

Symbol

Empty

Nothing

Union of
M; and M2

Concat of
M; and M2

Star of M

Every regular language is of the form L(r)

Lemma Given an NFA M, for each subset Q <
Statesw, there is a regular expression
re,q? satisfying:

L(r2)={uez, |[g——q'in M

with all intermedia te states in Q}

_ ¢QMao} | pQa0} QN3 # QNG }
r= rq,q' i |er% ’ (r%x%o ) rq ,q'o
Regular expressions have
complements (find DFA, invert it, find
expression)

Prove By
Corollary

The Pumping Lemma
For every regular language L there is a number | >
1 such that all w € L can be expressed as w =
uivu; where:

Length(v) > 1

Length(uiv) < |

Foralln >0 uv'u; e L

Prove By  Considering the # of state transitions
as compared to the # of states
Acceptance

If a DFA M accepts any string at all, it accepts one
whose length is less than the number of states in M

Prove By  Similarly to the pumping lemma
Corollary ~ We can test two expressions ry, r» for
equivalence:
ri=r2J L(r1&~r2) = L(r&~r;) =0
And by this lemma there are only
finitely many possible strings to check
Grammars

Components Terminals, non-terminals
Derivations  Non-terminalCstring of both
BNF Non-terminal ::= possible | possible
Regularity  All regular languages are context-
free (gijaq’ iff transition is in M)
Context free grammar is regular iff
all productions are of the form:
X luy or X u
For u being a string of terminals
and x and y both non-terminals
The NFA you can build from this as
the logically reverse process from
the method by which regular
languages are made context free



