
Basics 
Basics Σ – Alphabet, Σ* – All possible strings 

RegEx ε = match empty,  = match none 

 () = precedence, * = match 0-∞ 

 | = match either, ccat = match both 

Language } matches |{)( * ruurL   

 Equivalence of r determined by L(r) 

 
Automata 
Makeup Finite set StatesM of states 

 Finite set ΣM of input symbols 

 For each q  StatesM and a  ΣM, a 

subset ΔM(q, a)  StatesM which can be 
reached by that transition a 

 Element SM  StatesM, the start state 

 AcceptM  StatesM of accepting states 

 DFA have the property that ΔM(q, a) 
contains exactly one element, so: 
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Kleene’s Theorem 
Regularity L is regular iff it’s the set of strings 

accepted by some DFA 

For any regular expression r, L(r) is regular 
Symbol 

 
Empty 

 
Nothing 

 
Union of 
M1 and M2 

 
Concat of 
M1 and M2 

 
Star of M 

 
Every regular language is of the form L(r) 

Lemma Given an NFA M, for each subset Q  
StatesM, there is a regular expression 
rq,q’

Q satisfying: 
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Corollary Regular expressions have 
complements (find DFA, invert it, find 
expression) 

 
The Pumping Lemma 
For every regular language L there is a number l ≥ 

1 such that all w  L can be expressed as w = 
u1vu2 where: 

 Length(v) ≥ 1 

 Length(u1v) ≤ l 

 For all n ≥ 0 u1vnu2  L 

Prove By Considering the # of state transitions 
as compared to the # of states 

 
Acceptance 
If a DFA M accepts any string at all, it accepts one 
whose length is less than the number of states in M 

Prove By Similarly to the pumping lemma 

Corollary We can test two expressions r1, r2 for 
equivalence: 

 r1=r2  L(r1&~r2) = L(r2&~r1) = 0 

 And by this lemma there are only 
finitely many possible strings to check 

 
Grammars 
Components Terminals, non-terminals 

Derivations Non-terminalstring of both 

BNF Non-terminal ::= possible | possible 

Regularity All regular languages are context-

free (qaq’ iff transition is in M) 

 Context free grammar is regular iff 
all productions are of the form: 

 xuy or xu 

 For u being a string of terminals 
and x and y both non-terminals 

 The NFA you can build from this as 
the logically reverse process from 
the method by which regular 
languages are made context free 
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