Basics

Basics	Σ – Alphabet, Σ^* – All possible strings
RegEx	ϵ = match empty, \emptyset = match none
-	() = precedence, $*$ = match 0- ∞
	= match either, ccat = match both
	_ / *

Language $L(r) = \{u \in \Sigma^* \mid u \text{ matches } r\}$ Equivalence of r determined by L(r)

Automata

Finite set States_M of states Makeup Finite set Σ_M of input symbols For each $q \in States_M$ and $a \in \Sigma_M$, a subset $\Delta_M(q, a) \subseteq$ States_M which can be reached by that transition a Element $S_M \in \text{States}_M$, the start state Accept_M \subseteq States_M of accepting states DFA have the property that $\Delta_M(q, a)$ contains exactly one element, so: $q \xrightarrow{a} q' \Leftrightarrow q' = \delta_M(q, a)$

Subset

 $States_{PM} = \{S \mid S \subseteq States_{M}\}$ Constr. $\delta_{PM}(S,a) = \{q' \mid \exists q \in S.(\Delta_M(q,a) = q')\}$

> $S_{PM} = \{q \mid S_M \xrightarrow{\varepsilon} q\}$ $Accept_{PM} =$ { $S \in States_{PM} \mid \exists q \in S.(q \in Accept_M)$ }

Kleene's Theorem

Regularity	L is regular iff it's the set of strings
	accepted by some DFA
For any reg	ular expression r, L(r) is regular
Symbol	

Empty

Nothing

Union of

 M_1 and M_2

Concat of M_1 and M_2

Star of M

Every regular language is of the form L(r)Given an NFA M, for each subset $Q \subseteq$ Lemma States_M, there is a regular expression r_{a,a},Q satisfying:

$$L(r_{q,q'}^{\mathcal{Q}}) = \{ u \in \Sigma_M^* \mid q \xrightarrow{u} q' \text{ in } M \}$$

with all intermedia te states in Q}

 $r = r_{q,q'}^{Q \setminus \{q_0\}} \mid r_{q,q_0}^{Q \setminus \{q_0\}} (r_{q_0,q_0}^{Q \setminus \{q_0\}}) * r_{q_0,q'}^{Q \setminus \{q_0\}}$

Regular expressions have Corollary complements (find DFA, invert it, find expression)

The Pumping Lemma

For every regular language L there is a number $I \ge$ 1 such that all $w \in L$ can be expressed as w = u_1vu_2 where:

 $Length(v) \ge 1$ $Length(u_1v) \leq I$ For all $n \ge 0$ $u_1v^nu_2 \in L$ Considering the # of state transitions Prove By

as compared to the # of states

Acceptance

Prove By

If a DFA M accepts any string at all, it accepts one whose length is less than the number of states in M Similarly to the pumping lemma Prove Bv

Corollary We can test two expressions r_1 , r_2 for equivalence: $r_1 = r_2 \Box L(r_1 \& \sim r_2) = L(r_2 \& \sim r_1) = 0$ And by this lemma there are only

finitely many possible strings to check

Grammars

Components Derivations BNF Regularity

Terminals, non-terminals Non-terminal string of both Non-terminal ::= possible | possible All regular languages are contextfree $(q \square aq' \text{ iff transition is in } M)$ Context free grammar is regular iff all productions are of the form: $x \square uy \text{ or } x \square u$ For u being a string of terminals

and x and y both non-terminals The NFA you can build from this as the logically reverse process from the method by which regular languages are made context free