Basics
	Basics
	Σ – Alphabet, Σ* – All possible strings

	RegEx
	ε = match empty, (= match none

	
	() = precedence, * = match 0-∞

	
	| = match either, ccat = match both

	Language
	
[image: image1.wmf]}

matches

|

{

)

(

*

r

u

u

r

L

S

Î

=

	
	Equivalence of r determined by L(r)

Automata

	Makeup
	Finite set StatesM of states

	
	Finite set ΣM of input symbols

	
	For each q (StatesM and a (ΣM, a subset ΔM(q, a) (StatesM which can be reached by that transition a

	
	Element SM (StatesM, the start state

	
	AcceptM (StatesM of accepting states

	
	DFA have the property that ΔM(q, a) contains exactly one element, so:

	
	
[image: image2.wmf])

,

(

'

'

a

q

q

q

q

M

a

d

=

Û

¾

®

¾

	Subset Constr.
	
[image: image3.wmf])}

.(

|

{

}

|

{

)}

'

)

,

(

.(

|

'

{

)

,

(

}

|

{

M

PM

PM

M

PM

M

PM

M

PM

Accept

q

S

q

States

S

Accept

q

S

q

S

q

a

q

S

q

q

a

S

States

S

S

States

Î

Î

$

Î

=

¾

®

¾

=

=

D

Î

$

=

Í

=

e

d

Kleene’s Theorem
	Regularity
	L is regular iff it’s the set of strings accepted by some DFA

	For any regular expression r, L(r) is regular

	Symbol
	
[image: image4]

	Empty
	
[image: image5]

	Nothing
	
[image: image6]

	Union of M1 and M2
	
[image: image7]

	Concat of M1 and M2
	
[image: image8]

	Star of M
	
[image: image9]

	Every regular language is of the form L(r)

	Lemma
	Given an NFA M, for each subset Q (StatesM, there is a regular expression rq,q’Q satisfying:

	
	
[image: image10.wmf]Q}

in

states

te

intermedia

all

with

M

in

'

|

{

)

(

*

'

,

q

q

u

r

L

u

M

Q

q

q

¾

®

¾

S

Î

=

	Prove By
	
[image: image11.wmf]}

{

\

'

,

}

{

\

,

}

{

\

,

}

{

\

'

,

0

0

0

0

0

0

0

0

*

)

(

|

q

Q

q

q

q

Q

q

q

q

Q

q

q

q

Q

q

q

r

r

r

r

r

=

	Corollary
	Regular expressions have complements (find DFA, invert it, find expression)

The Pumping Lemma

	For every regular language L there is a number l ≥ 1 such that all w (L can be expressed as w = u1vu2 where:

	
	Length(v) ≥ 1

	
	Length(u1v) ≤ l

	
	For all n ≥ 0 u1vnu2 (L

	Prove By
	Considering the # of state transitions as compared to the # of states

Acceptance

	If a DFA M accepts any string at all, it accepts one whose length is less than the number of states in M

	Prove By
	Similarly to the pumping lemma

	Corollary
	We can test two expressions r1, r2 for equivalence:

	
	r1=r2 (L(r1&~r2) = L(r2&~r1) = 0

	
	And by this lemma there are only finitely many possible strings to check

Grammars

	Components
	Terminals, non-terminals

	Derivations
	Non-terminal(string of both

	BNF
	Non-terminal ::= possible | possible

	Regularity
	All regular languages are context-free (q(aq’ iff transition is in M)

	
	Context free grammar is regular iff all productions are of the form:

	
	x(uy or x(u

	
	For u being a string of terminals and x and y both non-terminals

	
	The NFA you can build from this as the logically reverse process from the method by which regular languages are made context free

[image: image12.emf]

1

1

2

a

1

1

1

2

3

ε

ε

M1

M2

M2

M1

ε

ε

3

2

1

M

ε

ε

2

1

_1203952042.unknown

_1203955354.unknown

_1203955588.unknown

_1203953535.unknown

_1203951377.unknown

