	Discrete Definitions
	Sample space: set of possible outcomes (Ω)

	
	Event: a subset of Ω

	
	Elementary event: event with one element in it

	
	Random variables: {X=r}

	
	Exclusive: events are exclusive if the associated sets are disjoint

	
	Exhaustive: events are exhaustive if the union = Ω

	
	Density function: function assigning probability to event

	
	Distinguishable: events are distinguishable if you consider them to be different

	Axioms
	P(A) ≥ 0

	
	P(Ω) = 1

	
	If A1,A2,A3 disjoint, P(A1(A2(A3) = P(A1)+P(A2)+P(A3)


	Empty Set Theorem
	P(()=0, from P(Ω) = P(Ω(() and axioms I and III

	Summa. Of Elementary Events Th.
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	Complem. Event The.
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	Inclusion-Exclusion Theorem
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 (for exclusive events conforms with axiom III trivially)

	Conditional Probability
	P(B|A): probability of B given A
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	A, B independent if 
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	Bayes’ Theorem
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	Using 
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	Binomial Theorem
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	Representations
	Tree (conditional probabilities), event tree (event probabilities), grid


	Uniform Distribution
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	Binomial Distribution
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	E(X) = np, V(X) = np(1-p)

	Multinomial Distribution
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: for entities that can be in k states, rk of them being in each state (n in total)

	Geometric Distribution
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	Poisson Distribution
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	Expectation
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	E(a)=a, E(aX)=aE(X), E(X+Y)=E(X)+E(Y)

	Variance
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	V(a)=0, V(aX)=a2V(X), V(X+Y)=V(X)+V(Y) (if independ.)

	Covariance
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	If X, Y independent W = 0 clearly

	
	V(X+Y)=V(X)+V(Y)+2W(X,Y)

	Correlation Coefficient
	
[image: image28.wmf])

(

)

(

)

,

(

Y

V

X

V

Y

X

W

R

=



	
	-1: complete negative correlation

	
	0: no correlation (!independence)

	
	+1: complete positive correlation


	Generating Functions
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(if X and Y are independent)

	
	For Binomial 
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	Difference Equations
	Homogenous: transfer all terms to one side so it is equal to 0, guess 
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	Watch for double roots! In this case set 
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	Inhomogenous: deem the right hand side (constant) to be 0 and solve normally, then augment by a f(n) = a, bn or cn2 such that substituting it into the original left hand side gives the constant. Now apply initial conditions as usual.


	Continuous Definitions
	Probability density function: function giving instantaneous probability at any point: 
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	Probability distribution function: 
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	Mode: most probable value

	
	Median: if the median is M then 
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	Uniform Distribution
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	Exponential Distribution
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	Normal Distribution
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	Standard result: 
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	Distribution function for Normal(0, 1) is 
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	Central Limit Thm.
	For X1,X2,…Xn IID RVs with mean μ and variance σ2, let Y be the sum of the RVs. Now as n increases Y tends to N(nμ,nσ2)

	Bivariate Distribution
	Constructed of two RVs, probability density has the form f(x, y)
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	Independent if 
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	Transforms
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	Y=y(X) is a RV with probability density 
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	Constraints on pdfs lead to constraints on transformation function: x(y) and y(x) must be single valued and derivative must be defined (and always +VE or –VE, else multi valued)

	Uniform Distributions
	These are readily generated by computer, transform to others
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