
Basic Blocks

A maximal sequence of instructions n1, . . . , nk with exactly one
predecesor (except for n1) and exactly one successor (except for
nk). They allow memoisation of data flow information.

Local scope: within basic blocks.

Global/intra-procedural scope: between basic blocks.

Inter-procedural scope: whole program.

Detect these by partitioning based on leader instructions: the
first instruction, branch target instructions and the instructions
immediately after a branch.

Unreachable Code

Deadness: data-flow property.

Unreachability: control-flow property.

Detected intra-procedurally by marking procedure entry node
and successors as reachable. Inter-procedurally work on the call
graph.

Straightening coalesces basic blocks which contain a redundant
jump.

Live Variable Analysis

Semantic versus syntactic liveness: semlive(n) ⊆ synlive(n).

LVA is a backwards data-flow analysis, calculated by iterated
least fixed point method since effect monotonic and set of vari-
ables finite.

live(n) =

 ⋃
s∈succ(n)

live(s)

 \def(n)

 ∪ ref(n)

For safety we must overestimate ambiguous references (e.g. as-
sume all address-taken variables are referenced) and underes-
timate ambiguous definitions (i.e. assume no variables are de-
fined).

Available Expression Analysis

Semantic versus syntactic availability: semavail(n) ⊇
synavail(n).

AVAIL is a forwards data-flow analysis, calculated by iterated
greatest fixed point method since effect monotonic and set of
variables finite.

avail(n) =

{⋂
p∈pred(n) ((avail(p)\kill(p)) ∪ gen(p)) pred(n) 6= ∅
∅ pred(n) = ∅

A node generates an expression e if it must compute the value
of e and does not subsequently redefine any of the variables
occuring in e. A node kills an expression e if it may redefine
some of the variables occuring in e and does not subsequently
recompute the value of e.

For safety we must underestimate ambiguous generation and
overestimate ambiguous killing (e.g. of address taken local vari-
ables).

Data-Flow Anomalies

An instruction is dead when the variable it assigns to is not live
on exit from that instruction.

Variables that are live at the beginning of a program represent
potentially unmatched usages of the variables.

Write-write anomalies occur when a variable may be written
twice with no intervening read:

wnr(n) =
⋃

p∈pred(n)

((wnr(p)\ref(p)) ∪ def(p))

And then watch out for variables that overlap when you perform
the union operation.

Register Allocation

Clash graphs contain one node for each virtual register and
an edge between those registers that are simultaneously live.
Heuristic colouring of the clash graph proceeds as follows:

1. Choose a vertex with the fewest number of incident edges

2. If that vertex has fewer edges than there are colours, re-
move the vertex and its edges from the graph and push the
vertex onto a stack

3. Otherwise choose a register to spill and remove that vertex
and edges from the graph

4. Repeat from step 1 until the graph is empty

5. Pop each vertex from the stack and colour it in the most
conservative way that avoids any existing neighbour colors

Uncolored registers remaining at the end are spilled to memory.
In practice may need to restart register allocation with one or
two fewer colors to provide temporary space for spilled values.

1

A preference graph contains information about which register
pairs appear together in a MOV.

Clash graphs can contain edges between those virtuala registers
which are potentially wiped by e.g. procedure calls and all
virtual registers live at the corresponding instruction.

Non-orthogonal instructions are handled by using architecture
specific virtual registers corresponding to hardware ones and
generating instructions (with corresponding MOVs) that only
operate on the appropriate registers.

Redundancy Elimination

CSE is enabled by AVAIL but may increase register pressure.

Copy propagation scans forward from instructions of the form
x=y replacing unmodified occurances of x by y.

Code hoisting reduces program size by moving duplicated ex-
pressions in two branches to before the branch, and relies on
very busy expression (VBE) analysis.

Loop-invariant code motion depends on reaching definition
analysis.

Partial redundancy elimination combines CSE with loop-
invariant code motion: an expression is partially redundant
when it is computed more than once on some paths through
a flowgraph (e.g. at the top and bottom of a loop).

SSA

Instead of live range splitting on user variables, we ensure vir-
tual registers are only assigned to once: SSA form. Use φ func-
tions to deal with control-flow join points.

Strength Reduction

An optimisation that replaces expensive operations (e.g. mul-
tiplication) with cheap ones (e.g. addition). For example, this
may occur in loops which index into arrays: we want to replace
the multiplication with a repeated addition. In general it works
as long as we have induction variable i = i⊕ c, j = c2⊕ (c1⊗ i)
and x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z).

Abstract Interpretation / Strictness
Analysis

Abstract domain D#, abstraction function α : D → D#, con-
cretisation function γ : D# → D and γ(α(x)) ⊇ x.
In strictness analysis, take D = Z ∪ {⊥}, D# = {0, 1} where 0
indicates that a computation certainly will not terminate. This
can be compacted with a Boolean representation.

To cope with recursive functions we take the least fixed point of
the Boolean formulae, starting from functions that never halt.
The effect is monotone because we cannot have negation.

Constraint Based Analysis

0CFA discovers which values may reach different places in the
program.

Program points i are associated with flow variables αi that
contain the possible values to occur at any program point.

ca → αa ⊇ {ca}
(λxa.eb)c → αc ⊇ {(λxa.eb)c}

xa bound at xb → αa ⊇ αb
(let . . .a = . . .b in . . .c)d → αd ⊇ αc, αa ⊇ αb

(. . .a . . .b)c → (αb 7→ αc) ⊇ αa

Where (γ 7→ δ) ⊇ β says that whenever β ⊇ {(λxq.er)p} we
have αq ⊇ γ ∧ δ ⊇ αr.

We can improve it by using 1CFA where functions get their own
flow variables for each call site.

Inference Based Analysis / Effect Sys-
tems

Specify judgements Γ ` e : φ, typically structurally induced.
Have safety condition of the form (∅ ` e : t)⇒ ([[e]] ∈ [[t]]).

e ::= x |λx.e | e1 e2 | ξ?x.e | ξ!e1.e2

t ::= int | t1
F−→ t2

Γ[x : int] ` e : t, F
Γ ` ξ?x.e : t, {Rξ} ∪ F

Γ ` e1 : int, F Γ ` e2 : t, F ′

Γ ` ξ!e1.e2 : t, F ∪ {Wξ} ∪ F ′

Γ[x : t] ` x : t, ∅

Γ[x : t] ` e : t′, F

Γ ` λx.e : t F−→ t′, ∅

Γ ` e1 : t F ′′

−−→ t′, F Γ ` e2 : t, F ′

Γ ` e1e2 : t′, F ∪ F ′ ∪ F ′′

Γ ` e : t F ′

−→ t′, F F ′ ⊆ F ′′

Γ ` e : t F ′′

−−→ t′, F

Safety condition: (∅ ` e : t, F) ⇒ (v ∈ [[t]] ∧ f ⊆
F where (v, f) = [[e]])

2

Instruction Scheduling

We want to avoid pipeline stalls by hoisting loads as far up as
possible.

Must respect data dependencies: read after write, write after
read, write after write. The instructions can be represented
as a DAG with these dependencies forming the edges between
them.

Static scheduling heuristics: every time we’re emitting the next
instruction, try and choose one which:

• Does not conflict with the previous instruction

• Is most likely to conflict with other instructions

• Is as far away as possible (in the DAG) from an instruction
which can valildly be scheduled last

Emitting algorithm:

1. Initialise a candidate list to contain nodes of the DAG with
no predecessors

2. While the list is non-empty:

(a) If possible emit a candidate satisfying all three heuris-
tics

(b) Otherwise emit an instruction satisfying last two
heuristics or a NOP (if using delay slots)

(c) Remove the emitted instruction from the DAG and
add instructions from the DAG which now have no
predecessors to the list

This conflicts with register colouring because minimising use
of registers linearises the DAG: solve this by allocating regis-
ters cyclically rather than conservatively (after respecting e.g.
preference graph).

Decompilation

Usually allowed for interoprability purposes.

Extract a flowgraph from assembler instructions as usual.

A dominator of n is a node that control flow must pass through
to reach n. An immediate dominator is the unique node that
dominates n but doesn’t dominate any other dominator of n.
This can be used to construct a dominance tree. Intervals are
regions of the graph where branches may go outwards but all
branches into the region must go to the head of the interval.
Back edges are those in the flow graph whose head dominates
their tail.

To recover control flow, observe that back edges have associated
loops. Intervals allow you to identify conditionals (single or

double sided) in a straighforward fashion, and the constructs
identified can be replaced in the graph with a more abstract
node so the detection can be iteratively applied.

Type reconstruction can be done after converting to SSA form
and then applying constraint based analysis based on the in-
structions that operate on a particular virtual register.

3

