
Definitions
IEEE Floating Point ±0: e, m = 0
 ±∞: e = max, m = 0
 NaN: e = max, m ≠ 0
 Denorm: e = 0, m ≠ 0

Multiprogramming
Scheduling First come, first served
 Shortest job first (optimal)
 Shortest remaining time first (new

process w/ low burst: preempt)
 Round robin (with quantum)
e Average nnn aat)1(1

Priority Static: e.g. use priority as next
predicted burst time

 Dynamic: aging (prevent starving)
or computed: penalise time use

Memory
Memory Static: fixed size partitions
 Dynamic: partition at runtime
 Paged: physical frame to logical

page mapping
Compaction Run time relocation
 Do it when you move off swap
Replacement FIFO: Belady’s anomaly etc
 LRU: timestamp/page stack
 NRU: reference/dirty bit or

second chance FIFO (clock)
 Reference counting
 Page buffering (pool of victims)
 App-specific hooks
 Locality of reference
 “Working set” <=> thrashing
Segments Local/global page tables
 External fragmentation
 Software segments (page array,

OS keeps priv. consistent)
 Paged segments (per-segment

page tables, not portable)

I/O
Access Modes Polled vs interrupt driven
 Blocking/nonblocking/asynch
Buffering Maintains copy semantics
 Single/double/circular
 Sized according to device type
Other issues Caching, scheduling

(queue/fairness), device
reservation, error handling

File Issues Directory service (name -> id)
 Storage service (id -> data)
 The DS must be implemented

on top of the SS (obviously)
Directories In a directed acyclic graph
 Directories stored as files
 open/create (SFID -> UFID)
FS Issues Access control
 Existence control (GC)
 Concurrency control: locks.

Mandatory/advisory,
shared/exclusive

Protection
Goals Prevent information

disclosure/modification
 Denial of service
 Isolation (debug/error control)
Mechanisms User/supervisor modes
 Memory management control
 File control (ACLs etc)
 Physical restrictions
 Passwords/encryption
 Stupidity/legislation
Principles Least privilege
 Default deny
 Current authority (caching..)
 Psychologically acceptable
 High circumvention cost
Authentication Passwords/biometrics/cards
 Mutual suspicion
Access Matrix Keyed on object -> ACL
 Keyed on subject -> capability
Capabilities Address space storage ->

hardware access
 Machine instructions to modify
 Software caps checked by

encryption/timeouts
 Hybrid: key ACL (stored at

resource) on capability

Unix File System
Inodes Type/mode/user|groupid/size/nlinks
 Direct x12/single|doub|trip indirect
Directory Files with inodes holding list of SFID
 Can have at most 1 hard link
Disk Boot|super|inode table|data blocks
 Superblock: nfree, free link lists etc
 Can “mount” into name service
Files Descriptor table: process specific ->

system wide -> device inode table
 UGO bits + setg|uid. Directories use

X = cwd, SG = group “sticky”
 Consistency issues (on crash)

Unix Processes
Principles Heavyweight (own page table, are

the unit of scheduling)
 Shared kernel space -> no c-switch
 Zombie state (for parents benefit)
Boot Kernel -> init -> tty -> login -> sh
IPC Pipes (later named pipes): consist

of finite circular queue
 Signals which process can catch
I/O Buffer cache w/ sync every 30

seconds
 Aggressive metadata writeback
Scheduling Lower priorities superuser only
 Penalises CPU usage over ≈ 5s

Windows Architecture
Structure Super: HAL, kernel, executive
 User: environment/protection

subs.
 HAL: interrupt/DMA/SMP etc
 Kernel: no pre-emption, schedules,

handles interrupts, processor sync.
Processes Processes own resources
 Threads are dispatch units,

lightweight and share resources
 Parent/child not mandatory
Scheduling Boost on return from IO/fg thread
 Priority decays over time to base
 Also get static priority (“real time”)
Objects Object manager checks

ACLs/creates objects|handles
 Implies uniform security model

enforced by Security Ref. Manager
 Name, directory, security

descriptor, type|info, ref count
 Live in a namespace with recursive

name parsing responsibility
VMM Can share memory in section

object = segment (based|non)
IPC Channels (copy, zero-copy, quick)
I/O Asynchronous: IRP holds

parameters, results etc
 Stackable drivers handle IRPs
 “Virtual block” cache w/ prefetch
 Unified cache works on VAS “lines”

(VMM does cache I/O)
 User control (temp/write through)
Subsystems Layered over NT native API
 DOS, OS/2, POSIX, WoW

Windows File Systems
FAT16 Linked list of clusters: max 2Gb
 Variable cluster size
FAT32 Wider FAT16: 8Gb @ 4k cluster

 Root directory anywhere on disk
 Can use backup FAT (fault tolerant)
 VFAT: long names on top of this
NTFS File records held in MFT (itself a

file) indexed on file ref (64 bits)
 Based on a volume, not partition
 Files are attribute/value pairs
 Special: LogFile, Bitmap, BadClus
 Transactions for consistency
 Volumes can be RAID sets,

supporting bad cluster remapping
 Security descriptor in MFT
 Compression and sparsity
 Symmetric encryption w/ RSA key

on that key, admin can get key..

