
Morphology

Words made up of morphemes. Morphemes which only occur
with others are affixes. Words are stems along with some af-
fixes. Have infixes, circumfixes, prefixes and postfixes. Inflec-
tional morphology sets value of slots in some paradigm, and
concerns e.g. tense, aspect, number, gender. Derivational mor-
phology doesn’t fit into neat paradigms (e.g. un-, anti-, re-),
and hence is not similarly productive. Stems and affixes can be
ambiguous (e.g. unionised).

Spelling rules show a mapping rule and a context in which the
rule may be applied. The symbol ^ represents an affix bound-

ary. An example is: ε→ e/

 s
x
z

 _̂s

You can use a full-form lexicon to list all inflected forms and
then treat derivational morphology as non-productive. Morpho-
logical analysis needs to know affixes, irregular forms and stems
with syntactic categories. In English we can associate irregu-
larity with words rather than meanings almost always (except
e.g. hanged him / hung it out).

Analysis is typically done with finite state transducers (FSAs
with symbols on transitions). For example, to recognize the
affix “s”:

1 2 3

4

e : e
other : other

e : e
other : other

s : s
x : x
z : z

s : s
x : x
z : z

e : ^

s : sε : ^

Part Of Speech Tagging

A corpus is a collection of text. A balanced corpus is a corpus
gathered from many genres.

N-gram models are a type of Markov chain. A bi-gram model
assigns probability to a word based only on the preceding word.
To allow for sparse data we use smoothing : make an assump-
tion about the probability of infrequent events, e.g. add-one
smoothing.

A POS tagger resolves lexical ambiguities to give the most likely
set of sentence tags (e.g. verb, singular noun, plural noun).
This tagging is not necessarily globally coherent. A possible
simple algorithm is one based on bi-grams, and P (T |W) =
P (T)P (W |T)

P (W) with P (T) ≈ P (ti|tt−1) and P (W |T) ≈ P (wi|ti).
Unknown words may be handled by guessing from a weighted
set of open-class tags or fallback on morphological analysis (e.g.
looking for -ed).

Evaluation is done by the percentage of correct tags. Typically
90% of the data is used to train and 10% for evaluation. Inter-
annotator agreement is 96% and the baseline of choosing the
most probable tag for a word is 90%. Most POS taggers have
very uneven error distributions.

Parsing And Generation

Two grammars are weakly equivalent if they generate the same
strings, and strongly equivalent if they generate the same brack-
etings as well (constituents are the same).

Grammars in which all non-terminal daughters are the leftmost
daughter are called left associative. Likewise grammars with
rightmost terminals are right associative.

Grammars are typically both lexically ambiguous (some ter-
minals correspond to multiple non-terminals) and structurally
ambiguous (different bracketings).

Chart Parsers

We can take advantage of the context-free nature of the gram-
mar to record rules that we previously applied. We do this via
a chart, which is a list of edges. Each edge has the structure
[id, left vertex, right vertex, mother category, daughters]. Each
vertex is an integer representing a point in the input string (e.g.
between each word). The mother category is the rule which cre-
ated the edge, and daughters are the list of daughter edges for
this particular rule application. Parsing proceeds as:

Parse:

1. Create chart

2. For each word in the input, let from be the left vertex, to
be the right vertex and daughters be [word]

(a) For each category associated with word

i. Add new edge from, to, category, daughters

Add new edge from, to, category, daughters:

1. Put [id, from, to, category, daughters] into the chart

2. For each rule lhs→ cat1 . . . catn−1, category

(a) Find sets of contiguous edges
[id1, from1, to1, cat1, daughters1] . . . [idn−1, fromn−1, from, catn−1, daughtersn−1]
so that toi = fromi+1

(b) For each list of edges, Add new edge from1,to, lhs,
(id1 . . . id)

1

The algorithm is complete but may not terminate in the case
of recursive rules.

We can make the algorithm faster by sharing edges. If we are
about to add an edge that differs from an existing one only
in the daughters, we can just modify the existing daughters to
be the union of the two others. This is called packing. Note
however that producing the output is still an exponential time
process.

Active chart parsers have edges that record the input they ex-
pect (i.e. a non-terminal symbol) in addition to daughters that
have been seen. Each time a passive edge (one with no more
input expected, e.g. for terminals) is added, the active edges
are searched to see if it can be completed with the passive one.

Parsing Comments

The parsing search space can be ordered by adding an explicit
schedule which tells us which rules to try first. Indeed, very
low probability rules can be excluded from consideration by
this process (known as beam search).

FSAs cannot in general be used for natural languages due to
the presence of centre embedding. However, the human brain
has a limit to the amount of centre-embedding it can deal with..
this could open the door to FSA analysis. However, FSA tech-
niques involve much redundancy and we cannot build up good
semantic representations due to the lack of internal structure.

Constraint Based Grammars

These can encode e.g. subject-verb agreement and subcatego-
rization (verb arity) easily. We typically do this with feature
structures. These are single-rooted directed acyclic graphs with
arcs labeled by features and terminal nodes associated with val-
ues. No feature may appear on two or more edges leading out
of a node. An atomic valued feature points to a terminal node,
complex valued ones do not. A sequence of features is a path.
A feature structure FS1 subsumes FS2 if and only if every path
in FS1 exists in FS2 which preserves path atomic values, and
every pair of paths which lead to the same node in FS1 (are
reentrant) are also reentrant in FS2. Unification is defined by
the most general FS which subsumes both FS1 and FS2.

Rules are encoded as FSs with features MOTHER, DTR1,
DTR2 etc. For example:
MOTHER

[
CAT VP
AGR 1

]
DTR1

[
CAT V
AGR 1

]
DTR2

[
CAT NP
AGR []

]


Complicated rules will typically have a HEAD feature which
contains information shared between lexical entries and phrases
of the same category (e.g. the category itself and the verb

agreement), whereas things like object and subject are ancillary
(in the case of intransitive verbs only one of these will be filled).
For example: HEAD 1

OBJ filled
SUBJ filled

→ 2

 HEAD
[
AGR 3

]
OBJ filled
SUBJ filled

 ,
 HEAD 1

[
AGR 3

]
OBJ filled
SUBJ 2


Note that when defining FS grammars certain forms may occur
over and over again (e.g. the FS for particular words). This is
solved with templates. Note also that inflectional morphology
can be encoded by considering stems and affixes as FSs. This
will help e.g. exclude fee-ed as a valid analysis for feed.

Parsing With Feature Structures

Such a system will build a parse structure which is subsumed by
all the constraints encoded by the feature structures. Usually
chart parsing is used. When we need to check a grammar rule
matches an edge, the feature structures in the edges of the
chart that correspond to the possible daughters are copied along
with the grammar rule feature structure. The copied daughters
are unified with the daughter positions in the copy of the rule
and if successful the copied structure is associated with a new
chart edge. Copying is necessary because unification pollutes
the rules with extra information which may not be applicable
to all uses.

Copying can be expensive but is improved by pretesting for
likely unification, sharing unchanged parts of the FS and using
linguistic locality in rule construction. Packing is poor since
structures are rarely identical, but can be improved by testing
if an edge can be packed using subsumption.

Semantics

This can be done by augmenting your FS grammars with a SEM
feature which contains an encoding of predicates such as:

SEM

 PRED and
ARG1 4
ARG2 5


These features can also contain INDEX subfeatures, which are
the characteristic variables of the noun. It is used to “reach
inside” the predicates which are applied in the noun FSs. A thus
constructed semantic representation is a logical form. This is
typically first order predicate calculus (FOPC) but this doesn’t
encode ambiguity well (not probabilistic and forces particular
scopal relationships).

Meaning postulates are inference rules relating open classes.
However, even if we constrain these to implication rather than
(philosophically tricky) equality, it is hard to acquire these pos-
tulates and control the inferences they allow.

2

Semantic Relationships

Hyponomy is the is-a relationship. Classically we may have
a tree structure (a taxonomy), though you can allow multiple
inheritance. This only really makes sense for concrete nouns,
and dealing with quantization can be tricky. It can be used
for semantic classification (e.g. the object of eat has to be edi-
ble), shallow inference (X murdered Y implies X killed Y), for
coarse grained statistics (classify on hyponyms instead of base
words), machine translation (substitute hypernym for untrans-
latable words) and information retrieval query expansion.

Meronomy is the part-of relationship.

Synonymy is the same-meaning relationship.

Antonymy is the opposite-meaning relationship. Only relevant
for some adjective classes.

Polysymy is the state of a word having more than one sense
(e.g. dance, which can be a noun or a verb).

Homonymy refers to polysemous words whose senses are en-
tirely unrelated (e.g. bank).

Word Sense Disambiguation

This selects the correct sense of a word in some context. Classi-
cally done by hand crafting rules, but nowadays sense frequency,
collocations and selectional restrictions are used with machine
learning to avoid this. Success rates can be as high as 95% for
homonyms, but may be 70% for general polysyms.

Collocations are groups of multiple words that occur together
more often than chance would suggest. This can be used for
WSD (e.g. striped bass vs. bass guitars).

Yarowsky’s algorithm for WSD is a machine learning technique
exploiting collocates. This proceeds by:

1. Identify all examples of the word to be disambiguated and
store their contexts.

2. Identify some seeds which reliable disambiguate a few of
these uses according to our initial knowledge: tag these
uses with the right class and count the rest as residual.

3. Then until we have convergence:

(a) Train a decision list classifier on the examples we have
identified the class of (ordered list of criterion tagged
with reliability, may include criterion like some con-
crete surrounding words or rules like “animal” being
within 10 words).

(b) Apply the classifier to the training set and add exam-
ples tagged with greater than a threshold reliability
to the appropriate classes.

Yarowsky also demonstrated the one sense per discourse prin-
ciple, which can be used to refine the algorithm above.

Discourse

This refers to relationships between phrases, which may be e.g.
explanatory or narratory. Discourses must have connectivity to
be coherent, which can be hard for strategic generation algo-
rithms. Things affecting discourse interpretation include:

• Coherence assumptions(e.g. John likes Bill. He gave him
an expensive present).

• Cue phrases (e.g. and).

• Punctuation (e.g. parentheses enclosing an explanation,
lists encoding narration).

• Real world content (e.g. Max fell. John pushed him as he
lay on the ground).

• Tense and aspect (e.g. Max fell. John had pushed him).

By discarding superfluous phrases in a discourse tree structure
(e.g. explanations) we can obtain a summary.

Referring Expressions

Referents are real word entities that text refers to. Referring
expressions are language that performs reference. Antecedents
are texts evoking a referent (e.g. “Niall” is the antecedent of “the
historian”). Anaphora are references to an antecedent (e.g. “the
historian”). Finally, cataphora appear before their referents are
introduced.

Pronoun number and gender can be used to help resolve
anaphora. We can also avoid resolving pleonastic pronouns
which are semantically empty (e.g. “it is snowing”). There
are also a number of salience effects:

• Recency

• Grammatical role: subjects > objects > everything else.

• Repeated mention

• Parallelism: entities which share the same role as the pro-
noun in the same sort of sentence are preferred.

• Coherence

The Lappin and Leass algorithm provides a means to resolve
anaphora:

1. For each sentence:

(a) Divide all global salience factors for each equivalence
class by 2

(b) Identify referring NPs in the sentence (i.e. exclude
pleonastic pronouns)

3

(c) Calculate per-NP salience factors and add those as
referents to the global salience table

(d) For each pronoun in the sentence:

i. Collect potential referents from most recent 4 sen-
tences

ii. Filter referents by binding and agreement
iii. Obtain per-pronoun adjustments for each referent
iv. Select the most salient referent taking into ac-

count the adjustment, preferring the closest ref-
erent in case of a tie

v. Add the pronoun into the referent equivalence
class, incrementing the salience factor by the rel-
evant non-duplicate salience factors

Global salience factors are:

Factor Weight Remarks
Recency 100 For current sentence
Subject 80

Existential sentence object 70
Direct object 50
Indirect object 40 e.g. “Sandy” in “give a present to Sandy”

Oblique complement 40
Non-embedded noun 80 Not a part of another noun phrase
Other non-adverbial 50

Per-pronoun salience factors are:

Factor Weight Remarks
Cataphora -175 Can be negative since not added to global salience table
Same role 35

4

