Linear Space

Set V of vectors is a linear space over field F of scalars if:

- 1. $\forall u, v \in V.u + v \in V$
- 2. (u+v)+w=u+(v+w)
- 3. u + v = v + u
- 4. $\exists \vec{0}.\vec{0} + v = v$
- 5. $\exists (-v).v + (-v) = \vec{0}$
- 6. $\forall v \in V, a \in F.av \in V$
- 7. a(u+v) = au + av
- 8. (a+b)v = ab + bv
- **9.** $\exists 1.1v = v$

Linear Subspace

 $W \subset V. \forall u, v \in W, a, b \in F$ have that $au + bv \in W$ Linear u is a linear combination of Combinat. v₁,v₂,...v_n if $\exists a_1, a_2 \dots a_n . u = \sum_{i=1}^n a_i v_i$

Linear Independ.

 $\sum_{i=1}^{n} a_i v_i = \vec{0} \leftrightarrow \forall i.a_i = 0$

Vectors are linearly independent if

Basis

A set of vectors is a basis for a space V if they are linearly independent and their span is equal to V

Inner Product

Inner products must satisfy these:

1.
$$\langle v, v \rangle \ge 0$$
 and $\langle v, v \rangle = 0 \leftrightarrow v = \vec{0}$
2. $\langle au + bv, w \rangle = a \langle u, w \rangle + b \langle v, w \rangle$
3. $\langle u, v \rangle = \overline{\langle v, u \rangle}$

Norms

Norms on V must satisfy these:

1.
$$||v|| \ge 0$$
 and $||v|| = 0 \leftrightarrow v = \vec{0}$

$$2. \quad \forall a \in C . \|av\| = |a| \|v\|$$

3. $||u+v|| \le ||u|| + ||v||$

Cauchy-Schwarz Orthogonality

$$u, v \text{ orthogonal} \leftrightarrow \langle u, v \rangle = 0$$

 $|\langle \mu, \nu \rangle|^2 < \langle \mu, \mu \rangle \langle \nu, \nu \rangle$

A sequence of vectors is Orthogonal orthogonal if all vectors are System mutually orthogonal and not the zero vector Orthonormal An orthogonal system where System $||u_i|| = 1$

If
$$u = \sum_{i=1}^{n} a_i e_i$$
, $a_i = \langle u, e_i \rangle$

Fourier Coefficients

Given a vector u, the scalars $\langle u, e_i \rangle$ wrt. an orthonormal

System are called the
Generalized Fourier
coefficients of u
$$\langle u, v \rangle = \sum_{i=1}^{n} \langle u, e_i \rangle \overline{\langle v, e_i} \rangle$$

 $\left\| \sum_{i=1}^{n} a_i u_i \right\|^2 = \sum_{i=1}^{n} |a_i|^2 |u_i|^2$ Orthogonal
Projection $\widetilde{u} = \sum_{i=1}^{n} \langle u, e_i \rangle e_i$
 $\forall u \in V, w \in (W = span\{ortho\}):$
 $\langle u - \widetilde{u}, w \rangle = 0,$
 $\left\| u - w \right\|^2 = \left\| u - \widetilde{u} \right\|^2 + \left\| \widetilde{u} - w \right\|^2$
The orthogonal projection is
the closest vector to v in W
An infinite orthogonal system
is closed if $\left\| u - \widetilde{u} \right\| = 0$ CompleteAn infinite orthogonal system
is complete if the zero vector
is the only one orthogonal to
all basis vectors (and closure
implies completeness)FourierFunctions are piecewise
continuous except at a finite
number of points, and at
these points the left and
right finite limits exist
This is a linear space. Define:
 $\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$
In the space of piecewise
continuous functions,
 $\{\frac{1}{\sqrt{2}}, \sin, \cos x, \sin 2x, \cos 2x..\}$
is a closed orthonormal sys.
Can also deal with piecewise
continuous functions that
map to complex numbers:
 $\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$
 $\{1, e^{ix}, e^{-ix}, e^{i2x}, ...\}$
The coefficients of these
Fourier spaces are related by
 $c_n = \frac{a_n - b_n}{2\pi} \int_{-\pi} x \int (x) \overline{g(x)} dx$
 $\{1, e^{ix}, e^{-ix}, e^{i2x}, ...\}$
The coefficients of these
Fourier spaces are related by
 $c_n = \frac{a_n - b_n}{2\pi} , c_n = \frac{a_n + b_n}{2\pi} , c_0 = \frac{a_n}{2}$ Dirichlet's
Dirichlet's
Given this, the Fourier series

pointwise to $\frac{f(x-)+f(x+)}{2}$ where

f(x-), f(x+) are the left and right limits at $x \in [-\pi, \pi]$

Fourier
Transform
$$F(\omega) = F_{1/1}(\omega) = \frac{1}{2}\int_{-\infty}^{\omega} f(x)e^{-\omega \omega} dx$$

Say functions f.R C are
piecewise continuous on every
finite interval and absolutely
integrable if $\int_{-\infty}^{\omega} f(x) dx = x$. Let
G(R) be fins with both conditions
Subsequent properties will
assume the functions in G(R), a
linear space over the scalars C
F is defined everywhere and a
linear space over the scalars C
F is defined everywhere and a
continuous functionMoment
Generating
Function $I(A)$: indicator function of A:
 $I(A)(\omega) = 1 \leftrightarrow w \in A$
 $M_{\infty}(v) = E(w^{2})$, so:
 $R_{\infty}(v) = K_{1/1}(w) = were Al $M_{\infty}(v) = E(w^{2})$, so:
 $R_{\infty}(v) = K_{1/1}(w) = were Al $M_{\infty}(v) = E(w^{2})$, so:
 $R_{\infty}(v) = K_{1/1}(w) = were Al $M_{\infty}(v) = E(w^{2})$, so:
 $R_{\infty}(v) = K_{1/1}(w) = were Al $M_{\infty}(v) = E(w^{2})$, so:
 $R_{1}(v) = were Al $M_{\infty}(v) = E(w^{2})$, so:
 $R_{1}(v) = W_{1/2}(w) = W_{$$$$$$

Definitions $X \sim U(0,1)$: X distribut. U(0,1)

Markov Chains

Given n discrete RVs taking values in some countable S, then the sequence is a Markov chain if: $P(X_n = x_n | X_0 = x_0, .., X_{n-1} = x_{n-1}) =$ $P(X_n = x_n \mid X_{n-1} = x_{n-1})$ Time homogenous if: $P(X_n = j | X_{n-1} = i) = P(X_1 = j | X_0 = i)$ Transition matrix is: $p_{ij} = P(X_n = j | X_{n-1} = i)$ N-step trans. matrix: $p_{ij}^{(n)} = P(X_n = j | X_0 = i)$ $p_{ij}^{(m+n)} = \sum_{k} p_{ik}^{(m)} p_{kj}^{(n)}$ Chapman-Kolmogorov If for $n \ge 0, p_{ij}^{(n)} > 0$ then j Accessibility accessible from i (i \square j) If $i \Box j$ and $j \Box i$ then $i \Box j$ (they communicate) A communicating class that once entered cannot be left is called closed A closed communicating class of a single state is absorbing A state space of a single communicating class is called irreducible, else reducible Define f, the probability that starting in state I we visit state j for the first time at n: $f_{ij}^{(n)} = P(X_1 \neq j, ..., X_{n-1} \neq j, X_n = k \mid X_0 = i)$ If $f_{ii} < 1$ then state i is transient, else recurrent Mean $T_i = \min\{n \ge 1 : X_n = j\}, \infty$ if Recurrence no such visit occurs $\mu_i = E(T_i \mid X_0 = i) = \sum n f_{ii}^{(n)}$ if i recurrent, ∞ otherwise Positive recurrent if $\mu_i < \infty$, null recurrent otherwise Periodicity Let $d_i = \gcd\{n : p_{ii}^{(n)} > 0\}$: if d_i = 1 then i is aperodic, else periodic with period d_i Stationary $\pi = (\pi_i; j \in S)$ is a stationary Distribution distribution with transition matrix P if: $\pi_j \ge 0$, $\sum_{i=s} \pi_j = 1$, $\pi = \pi P$ For an irreducible, aperiodic **Erdos-**Feller-MC, if the MC is transient Pollard $p_{ii}^{(n)} \rightarrow 0$. If the MC is recurrent $p_{ii}^{(n)} \rightarrow \pi_i$ and if null recurrent $\pi_i = 0$ or positive recurrent π is a unique stationary distribution and

 $\mu_{i} = \frac{1}{2}$

а

а

Time Reversibility

$$\mu_i - \overline{\pi_i}$$

If X_n is an irreducible, positive
recurrent MC with transition
matrix P and unique stationary
distribution π , $Y_n = X_{-n}$ is also
an MC with stationary dist. π .
The MC is reversible if the
trans. matrices are identical,
and iff $\pi_i p_{ii} = \pi_i p_{ii}$ (the local

balance conditions)