Definitions	Meta-variables: range over real objects Interpretation: maps meta- variables to objects Consistent: a set of statements is consistent if some interpretation satisfies them all Entailment: a set of statements entails A if every interpretation that satisfies the statements in the sets satisfies A: $S \le A$ Validity: A is valid if every interpretation satisfies A: $\le A$ Equivalence: A and B are equivalent if A entails B and vice-versa: $A > B$ Deducibility: A deducible from S if there is a finite proof of A starting from S: S ' A Soundness: If S ' A then S $\le A$ Completeness: If S $\le A$, S ' A Deduction: If S({A} ' B then we can say that S ' A \square B	First Order Logic	$\frac{\Gamma \Rightarrow \Delta, A, B \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, A \lor B} (/R)$ $\frac{\Gamma \Rightarrow \Delta, A B, \Gamma \Rightarrow \Delta}{A \rightarrow B, \Gamma \Rightarrow \Delta} (\Box L)$ $\frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B} (\Box R)$ Allows reason about <i>functions</i> and <i>relations</i> over a <i>domain</i> Function symbol: stands for an actual n-place function Constant: 0-place functions Variable: ranges over domain Terms: variables, fn application Relation symbol: stands for an actual n-place relation Atomic formula: a relation applied to n terms Formula: built from atomic formulae with propositional op. Quantifiers: "for all" and "there exists" Interpretation (D, I) consists of a domain D and a function I
Proposit. Identities	Note that we can get dual versions by swapping t,f,and,or $A \lor (B \land C) = (A \lor B) \land (A \lor C)$ $(A \lor B) = \neg(\neg A \land \neg B)$		a domain D and a function f mapping symbols to real elements, fns and relations Valuation V: gives values to
NNF CNF	 Get rid of implication Push negation in Push disjunctions in Simplify (delete disjunction with P and IP 	Truth	$\begin{array}{l} \text{If evaluations in a FOL formula} \\ \leq_{I,V} P(t) \Box \ I[P](I_V[t]) \\ \leq_{I,V} u = v \Box \ I_V[u] = I_V[v] \\ \text{Others by obvious recursion} \\ \text{Validity:} \leq_I A \Box \leq_{I,V} A \text{ for all } V \end{array}$
	delete disjunction that	Substitution	Satisfiable: A valid for some I With $A[t/x]$ no variable of t
	This yields a theorem prover for propositional logic: does it simplify to a tautology?	Identities	must be bound in A Get dual versions by swapping quantifiers, and, or $\neg(\forall xA) = \exists x \neg A$
Sequent Calculus	$\frac{\Gamma \Rightarrow \Delta, A A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} (\text{cut})$ $\frac{\Gamma \Rightarrow \Delta, A}{\neg A, \Gamma \Rightarrow \Delta} (\text{!L})$ $\frac{A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg A} (\text{!R})$ $\frac{A, B, \Gamma \Rightarrow \Delta}{A \land B, \Gamma \Rightarrow \Delta} (-L)$ $\frac{\Gamma \Rightarrow \Delta, A \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \land B} (-R)$ $\frac{A, \Gamma \Rightarrow \Delta}{A \lor B, \Gamma \Rightarrow \Delta} (/L)$	Sequent Calculus	$(\forall xA) \land (\forall xB) = (\forall xA \land B)$ Holding only if x not free in B: $(\forall xA) \land B = \forall x(A \land B)$ $(\forall xA) \lor B = \forall x(A \lor B)$ $(\forall xA) \rightarrow B = \exists x(A \rightarrow B)$ $\frac{A[t/x], \Gamma \Rightarrow \Delta}{\forall xA, \Gamma \Rightarrow \Delta}$ (for all L) $\frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta}$ (for all R,x NF con) $\frac{A, \Gamma \Rightarrow \Delta}{\exists xA, \Gamma \Rightarrow \Delta}$ (exists L,x NF con) $\frac{\Gamma \Rightarrow \Delta, A[t/x]}{\exists xA, \Gamma \Rightarrow \Delta}$ (exists R)

			$HB = \{P(t_1,, t_n) \mid t_1,, t_n \in H\}$ for n-
Clauses	A disjunction of literals		place predicate symbols in S
	Empty clause (\Box) means <i>f</i>		HB contains all ground atoms
Method	1 Translate IA into CNF -		A Herbrand model (a subset of
	this gives a clause set		to be true: this lets us construct a
	2. Transform the clause set		satisfying model syntactically
	somehow 3 Deduce the empty clause	Herbrand's	S in unsatisfiable □ there is a <i>finite</i>
	(a contradiction)	Theorem	unsatisfiable set of <i>ground</i>
DPLL	1. Delete tautologies such		instances of clauses of 5
	as {P, !P,}	Unification	Find a MGU by unifying terms in
	 For each unit clause {L} delete all clauses 		the tuple from left to right,
	containing L and delete !L		applying the unification to terms
	from all others		Occurs check: cannot unify f(x)
	3. Delete all clauses		with x since x occurs in both
	containing pure literals (i.e. assume that literal)	Factoring	$\{B_1,, B_n, A_1,, A_m\}$ if $B_1 \sigma = = B_n \sigma$
	4. Perform a case split		$\{B_1, A_1, \dots, A_n\}\sigma$
Resolution	$\{B, A_1,, A_m\} \{\neg B, C_1,, C_n\}$	Prolog	Clauses have at most 1 ±VE literal
	$\{A_1,,A_m,C_1,,C_n\}$	FICIO	"Definite clause" with $1 + VE, 0 - VE$
	Combine this w/ unification to		"Goal clause" with $0 + VE$, $>0 - VE$
	get "binary resolution" (rename variables apart in the clauses)		To execute, resolve a program
	valuates apart in the clausesy		Choose leftmost literal of goal
PNF	1. Convert to NNF		clause and topmost definite clause
	2. Push negation inside		Depth first search, with backtrack
	3. Move quantifiers to		Unifies without occurs check!
	the front	BDDs	Canonical form of expression
Skolemizati	on 1. Convert to PNF		Sharing of identical subtrees, no
	2. For every bound variable v in		redundant tests in the tree
	$\forall x_1,, x_k \exists yA$ choose a		Exhibits model if Satisfiable
	new k-place function	Building	Do not expand connectives e.g. iff
	symbol f and replace		1. Convert operands to BDDs
	y by f applied to the		2. Combine BDDS respecting
	3. Repeat until no exists		3. Delete redundant tests
	quantifiers remain		To convert Z^Z':
			1. Trivial case if either is t or f
Herbrand	For a clause set S: H_{-} the set of constants in S(must		2. Let: a $7=if(P X Y)$
Universe	$h_0 = are set of constants in S(must be non-empty: invent a constant$		b. $Z'=if(P', X', Y')$
	to use if it is empty)		3. If P=P' recursively convert
	$H_{i+1} = H_i \cup \{f(t_1,, t_n) \mid t_1,, t_n \in H_i\}$		if (P, X^X, Y^Y)
	for n-place function symbols in S		if(P, X^7', Y^7')
	$H = \bigcup_{i>0} H_i$ (the universe)		5. If P>P' recursively convert
Herbrand	Every constant stands for itself,		if(P', Z^X', Z^Y')
Semantics	every function symbol stands for a		Hash table optimisation: can do
	"term forming operation"		

	Variable order crucial (can be exp)		instantiate any free variable:
Modal Logic	Consists of (W,R) a set of worlds and an accessibility relation Possibly: \Box , Necessarily: \Box true in all <i>accessible</i> worlds Interpretation: maps propositional letters to <i>subsets</i> of W Universally valid: A such that $ \leq_{W,R}$ A for all frames (W, R): A is a tautology. Typically we restrain R	Skolemize	updating any variable should effect the <i>entire</i> proof tree. Furthermore, skolemize "exists": Push quantifiers <i>in</i> , not out Then skolemize as usual
Truth	w $ \leq \Box A \Box v \leq A$ for some v such that R(w, v) Others by obvious recursion		
Identities	$\Box A = !\Box!A$ $\Box A \Box A (reflexive: T)$ $\Box A \Box \Box A (transitive: S4)$		
Sequent Calculus	$ \frac{A, \Gamma \Rightarrow \Delta}{\Xi A, \Gamma \Rightarrow \Delta} (\Box L) $ $ \frac{\Gamma^* \Rightarrow \Delta^*, A}{\Gamma \Rightarrow \Delta, \Xi A} (\Box R) $ $ \frac{A, \Gamma^* \Rightarrow \Delta^*}{\diamond A, \Gamma \Rightarrow \Delta} (\Box L) $ $ \frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \diamond A} (\Box R) $ $ \Gamma^* \text{ erases non-} \square \text{ assumptions} $ $ \Delta^* \text{ erases non-} \square \text{ goals} $		
Tableaux Calculus	Work in the sequent calculus with only expressions in NNF This means we only need one side of the sequent rules: choose left		
Sequent Rules	$\frac{\overline{A, \neg A, \Gamma \Rightarrow}}{A, \neg A, \Gamma \Rightarrow} \text{(basic)}$ $\frac{\neg A, \Gamma \Rightarrow A, \Gamma \Rightarrow}{\Gamma \Rightarrow} \text{(cut)}$ $\frac{\overline{A, B, \Gamma \Rightarrow}}{A \land B, \Gamma \Rightarrow} \text{(-L)}$ $\frac{A, \Gamma \Rightarrow B, \Gamma \Rightarrow}{A \lor B, \Gamma \Rightarrow} \text{(/L)}$ $\frac{A[t/x], \Gamma \Rightarrow}{\forall xA, \Gamma \Rightarrow} \text{(for all L)}$ $\frac{A, \Gamma \Rightarrow}{\forall xA, \Gamma \Rightarrow} \text{(exists L, x NF in } \Gamma\text{)}$ $\frac{A, \Gamma \Rightarrow}{\Xi A, \Gamma \Rightarrow} (\Box L)$		
Unification	$\forall A, 1 \Rightarrow$ For all on the left now inserts a <i>new</i> free variable: let unification		