
Definitions Meta-variables: range over real
objects

 Interpretation: maps meta-
variables to objects

 Consistent: a set of statements
is consistent if some
interpretation satisfies them all

 Entailment: a set of statements
entails A if every interpretation
that satisfies the statements in
the sets satisfies A: S  A

 Validity: A is valid if every
interpretation satisfies A:  A

 Equivalence: A and B are
equivalent if A entails B and
vice-versa: A  B

 Deducibility: A deducible from S
if there is a finite proof of A
starting from S: S  A

 Soundness: If S  A then S  A
 Completeness: If S  A, S A

 Deduction: If S{A}  B then we

can say that S  A  B

Proposit.
Identities

Note that we can get dual
versions by swapping t,f,and,or

)()()(CABACBA 

)()(BABA 

NNF 1. Get rid of implication
2. Push negation in

CNF 3. Push disjunctions in
4. Simplify (delete

disjunction with P and !P,
delete disjunction that
includes another, replace

)()(APAP  by A)

 This yields a theorem prover for
propositional logic: does it
simplify to a tautology?

Sequent
Calculus 

 ,, AA
(cut)





,

,

A

A
(!L)

A

A





,

,
(!R)





,

,,

BA

BA
(L)

BA

BA





,

,,
(R)





,

,,

BA

BA
(L)

BA

BA





,

,,
(R)





,

,,

BA

BA
(L)

BA

BA





,

,,
 (R)

First Order
Logic

Allows reason about functions
and relations over a domain

 Function symbol: stands for an
actual n-place function

 Constant: 0-place functions
 Variable: ranges over domain
 Terms: variables, fn application
 Relation symbol: stands for an

actual n-place relation
 Atomic formula: a relation

applied to n terms
 Formula: built from atomic

formulae with propositional op.
 Quantifiers: “for all” and

“there exists”
 Interpretation (D, I) consists of

a domain D and a function I
mapping symbols to real
elements, fns and relations

 Valuation V: gives values to
free variables in a FOL formula

Truth I,V P(t)  I[P](IV[t])

 I,V u = v  IV[u] = IV[v]
 Others by obvious recursion
 Validity: I A  I,V A for all V
 Satisfiable: A valid for some I
Substitution With A[t/x] no variable of t

must be bound in A
Identities Get dual versions by swapping

quantifiers, and, or
 AxxA )(

)()()(BxAxBxA 

 Holding only if x not free in B:
)()(BAxBxA 

)()(BAxBxA 

)()(BAxBxA 

Sequent
Calculus 



,

],/[

xA

xtA
(for all L)

xA

A





,

,
(for all R,x NF con)





,

,

xA

A
(exists L,x NF con)

xA

xtA





,

]/[,
(exists R)

Clauses A disjunction of literals
 Empty clause () means f
Method Prove A by contradiction:

1. Translate !A into CNF -
this gives a clause set

2. Transform the clause set
somehow

3. Deduce the empty clause
(a contradiction)

DPLL 1. Delete tautologies such
as {P, !P, …}

2. For each unit clause {L}
delete all clauses
containing L and delete !L
from all others

3. Delete all clauses
containing pure literals
(i.e. assume that literal)

4. Perform a case split
Resolution

},...,,,..,{

},...,,{},..,,{

11

11

nm

nm

CCAA

CCBAAB 

 Combine this w/ unification to
get “binary resolution” (rename
variables apart in the clauses)

PNF 1. Convert to NNF
2. Push negation inside

any quantifiers
3. Move quantifiers to

the front
Skolemization 1. Convert to PNF

2. For every bound
variable y in

yAxx k ,..,1 choose a

new k-place function
symbol f and replace
y by f applied to the
appropriate variables

3. Repeat until no exists
quantifiers remain

Herbrand
Universe

For a clause set S:
Sin constants ofset the0 H (must

be non-empty: invent a constant
to use if it is empty)

 },..,|),..,({ 111 innii HttttfHH 

for n-place function symbols in S
 

0


i

iHH (the universe)

Herbrand
Semantics

Every constant stands for itself,
every function symbol stands for a
“term forming operation”

 },..,|),..,({ 11 HttttPHB nn  for n-

place predicate symbols in S
 HB contains all ground atoms
 A Herbrand model (a subset of

HB) specifies the things we want
to be true: this lets us construct a
satisfying model syntactically

Herbrand’s
Theorem

S in unsatisfiable  there is a finite
unsatisfiable set of ground
instances of clauses of S

Unification Find a MGU by unifying terms in
the tuple from left to right,
applying the unification to terms
yet to be unified at each step

 Occurs check: cannot unify f(x)
with x since x occurs in both

Factoring



n

n

mn BB
AAB

AABB
 .. if

},...,,{

},..,,,...,{
1

11

11

Prolog Clauses have at most 1 +VE literal
 “Definite clause” with 1 +VE,0 -VE
 “Goal clause” with 0 +VE, >0 -VE
 To execute, resolve a program

clause with goal clause repeatedly
 Choose leftmost literal of goal

clause and topmost definite clause
 Depth first search, with backtrack
 Unifies without occurs check!

BDDs Canonical form of expression
 Sharing of identical subtrees, no

redundant tests in the tree
 Detects tautologies/inconsistency
 Exhibits model if Satisfiable
Building Do not expand connectives e.g. iff
 1. Convert operands to BDDs

2. Combine BDDS respecting
the ordering and sharing

3. Delete redundant tests
 To convert Z^Z’:

1. Trivial case if either is t or f
2. Let:

a. Z=if(P, X, Y)
b. Z’=if(P’, X’, Y’)

3. If P=P’ recursively convert
if(P, X^X’, Y^Y’)

4. If P<P’ recursively convert
if(P, X^Z’, Y^Z’)

5. If P>P’ recursively convert
if(P’, Z^X’, Z^Y’)

 Hash table optimisation: can do
pointer compare for expressions

 Variable order crucial (can be exp)

Modal
Logic

Consists of (W,R) a set of worlds
and an accessibility relation

 Possibly: , Necessarily:  true in

all accessible worlds
 Interpretation: maps propositional

letters to subsets of W
 Universally valid: A such that |W,R

A for all frames (W, R): A is a
tautology. Typically we restrain R

Truth w | A  v | A for some v such
that R(w, v)

 Others by obvious recursion
Identities A = !!A
 A  A (reflexive: T)

 A  A (transitive: S4)
Sequent
Calculus 



,

,

A

A
 (L)

A

A





,

,
 (R)





,

**,

A

A
(L)

A

A





,

,
(R)

 Γ* erases non- assumptions

 Δ* erases non- goals

Tableaux
Calculus

Work in the sequent calculus with
only expressions in NNF

 This means we only need one side
of the sequent rules: choose left

Sequent
Rules  ,, AA

(basic)



 ,, AA
(cut)





,

,,

BA

BA
(L)





,

,,

BA

BA
(L)





,

],/[

xA

xtA
(for all L)





,

,

xA

A
(exists L, x NF in Γ)





,

,

A

A
 (L)





,

*,

A

A
(L)

Unification For all on the left now inserts a
new free variable: let unification

instantiate any free variable:
updating any variable should
effect the entire proof tree.
Furthermore, skolemize “exists”:

Skolemize Push quantifiers in, not out
 Then skolemize as usual

