
Definitions Meta-variables: range over real 
objects 

 Interpretation: maps meta-
variables to objects 

 Consistent: a set of statements 
is consistent if some 
interpretation satisfies them all 

 Entailment: a set of statements 
entails A if every interpretation 
that satisfies the statements in 
the sets satisfies A: S  A 

 Validity: A is valid if every 
interpretation satisfies A:  A 

 Equivalence: A and B are 
equivalent if A entails B and 
vice-versa: A  B 

 Deducibility: A deducible from S 
if there is a finite proof of A 
starting from S: S  A 

 Soundness: If S  A then S  A 
 Completeness: If S  A, S A 

 Deduction: If S{A}  B then we 

can say that S  A  B 
 

Proposit. 
Identities 

Note that we can get dual 
versions by swapping t,f,and,or 

 )()()( CABACBA   

 )()( BABA   

NNF 1. Get rid of implication 
2. Push negation in 

CNF 3. Push disjunctions in 
4. Simplify (delete 

disjunction with P and !P, 
delete disjunction that 
includes another, replace 

)()( APAP  by A) 

 This yields a theorem prover for 
propositional logic: does it 
simplify to a tautology? 
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First Order 
Logic 

Allows reason about functions 
and relations over a domain 

 Function symbol: stands for an 
actual n-place function 

 Constant: 0-place functions 
 Variable: ranges over domain 
 Terms: variables, fn application 
 Relation symbol: stands for an 

actual n-place relation 
 Atomic formula: a relation 

applied to n terms 
 Formula: built from atomic 

formulae with propositional op. 
 Quantifiers: “for all”  and 

“there exists” 
 Interpretation (D, I) consists of 

a domain D and a function I 
mapping symbols to real 
elements, fns and relations 

 Valuation V: gives values to 
free variables in a FOL formula 

Truth I,V P(t)  I[P](IV[t]) 

 I,V u = v  IV[u] = IV[v] 
 Others by obvious recursion 
 Validity: I A  I,V A for all V 
 Satisfiable: A valid for some I 
Substitution With A[t/x] no variable of t 

must be bound in A 
Identities Get dual versions by swapping 

quantifiers, and, or 
 AxxA  )(  

 )()()( BxAxBxA   

 Holding only if x not free in B: 
 )()( BAxBxA   

 )()( BAxBxA   

 )()( BAxBxA   

Sequent 
Calculus 



,

],/[

xA

xtA
(for all L) 

 

xA

A





,

,
(for all R,x NF con) 

 





,

,

xA

A
(exists L,x NF con) 

 

xA

xtA





,

]/[,
(exists R) 



 

Clauses A disjunction of literals 
 Empty clause () means f 
Method Prove A by contradiction: 

1. Translate !A into CNF - 
this gives a clause set 

2. Transform the clause set 
somehow 

3. Deduce the empty clause 
(a contradiction) 

DPLL 1. Delete tautologies such 
as {P, !P, …} 

2. For each unit clause {L} 
delete all clauses 
containing L and delete !L 
from all others 

3. Delete all clauses 
containing pure literals 
(i.e. assume that literal) 

4. Perform a case split 
Resolution 
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 Combine this w/ unification to 
get “binary resolution” (rename 
variables apart in the clauses) 

 

PNF 1. Convert to NNF 
2. Push negation inside 

any quantifiers 
3. Move quantifiers to 

the front 
Skolemization 1. Convert to PNF 

2. For every bound 
variable y in 

yAxx k ,..,1  choose a 

new k-place function 
symbol f and replace 
y by f applied to the 
appropriate variables 

3. Repeat until no exists 
quantifiers remain 

 

Herbrand 
Universe 

For a clause set S: 
Sin  constants ofset  the0 H (must 

be non-empty: invent a constant 
to use if it is empty) 
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for n-place function symbols in S 
 

0


i

iHH (the universe) 

Herbrand 
Semantics 

Every constant stands for itself, 
every function symbol stands for a 
“term forming operation” 

 },..,|),..,({ 11 HttttPHB nn   for n-

place predicate symbols in S 
 HB contains all ground atoms 
 A Herbrand model (a subset of 

HB) specifies the things we want 
to be true: this lets us construct a 
satisfying model syntactically 

Herbrand’s 
Theorem 

S in unsatisfiable  there is a finite 
unsatisfiable set of ground 
instances of clauses of S 

 

Unification Find a MGU by unifying terms in 
the tuple from left to right, 
applying the unification to terms 
yet to be unified at each step 

 Occurs check: cannot unify f(x) 
with x since x occurs in both 
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Prolog Clauses have at most 1 +VE literal 
 “Definite clause” with 1 +VE,0 -VE 
 “Goal clause” with 0 +VE, >0 -VE 
 To execute, resolve a program 

clause with goal clause repeatedly 
 Choose leftmost literal of goal 

clause and topmost definite clause 
 Depth first search, with backtrack 
 Unifies without occurs check! 
 

BDDs Canonical form of expression 
 Sharing of identical subtrees, no 

redundant tests in the tree 
 Detects tautologies/inconsistency 
 Exhibits model if Satisfiable 
Building Do not expand connectives e.g. iff 
 1. Convert operands to BDDs 

2. Combine BDDS respecting 
the ordering and sharing 

3. Delete redundant tests 
 To convert Z^Z’: 

1. Trivial case if either is t or f 
2. Let: 

a. Z=if(P, X, Y) 
b. Z’=if(P’, X’, Y’) 

3. If P=P’ recursively convert 
if(P, X^X’, Y^Y’) 

4. If P<P’ recursively convert 
if(P, X^Z’, Y^Z’) 

5. If P>P’ recursively convert 
if(P’, Z^X’, Z^Y’) 

 Hash table optimisation: can do 
pointer compare for expressions 



 Variable order crucial (can be exp) 
 

Modal 
Logic 

Consists of (W,R) a set of worlds 
and an accessibility relation 

 Possibly: , Necessarily:  true in 

all accessible worlds 
 Interpretation: maps propositional 

letters to subsets of W 
 Universally valid: A such that |W,R 

A for all frames (W, R): A is a 
tautology. Typically we restrain R 

Truth w | A  v | A for some v such 
that R(w, v) 

 Others by obvious recursion 
Identities A = !!A 
 A  A (reflexive: T) 

 A  A (transitive: S4) 
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 Γ* erases non- assumptions  

 Δ* erases non- goals 
 

Tableaux 
Calculus 

Work in the sequent calculus with 
only expressions in NNF 

 This means we only need one side 
of the sequent rules: choose left 
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Unification For all on the left now inserts a 
new free variable: let unification 

instantiate any free variable: 
updating any variable should 
effect the entire proof tree. 
Furthermore, skolemize “exists”: 

Skolemize Push quantifiers in, not out 
 Then skolemize as usual  
 


