Simple Ciphers	Shift cipher: letters as numbers, modular shift by constant factor Transposition cipher: key is permutation of letter position	Prior Knowledge Hash Tree	Publish h(M) for your M, possibly h(N M) for small M Leaves contain message hashes, branches hashes of subhashes
	Substitution cipher: swap character sequences around	One Time Signatures	Have secret keys 2n random R _{ij} , public key 2n h(R _{ij}): signature
Security	according to known mapping Vigenere cipher: shift cipher with multi-letter repeated key Computational or unconditional	Stream Auth.	($R_{b1,1}$, $R_{b2,2}$) for b in h(M) Verify each packet immediately, but don't sign each message: have $C_i = h(C_{i+1}, M_i)$ then send
	$p_C(C) = \sum_{K} p_K(K) p_P(D(K,C))$		C ₁ ,Sig(C ₁),(C ₂ ,M ₁),,(0,M _n)
	$p_{C}(C \mid P) = \sum_{\{K \mid P = D(K,C)\}} p_{K}(K)$	Blockcipher	Key dependent permutation Confusion, diffusion
	$p_P(P \mid C) = \frac{p_P(P)p_C(C P)}{p_C(C)}$	Feistel	$P = L_0 R_0, R_i = R_{i-1} \oplus f(L_{i-1})$
	$p_P(P) \sum_{\{K P=D(K-C)\}} p_K(K))$	Structure	(odd) $L_i = L_{i-1} \oplus f(R_{i-1})$ (even)
	$=\frac{p_{P}(P)\sum_{\{K P=D(K,C)\}}p_{K}(K))}{\sum_{K}p_{K}(K)p_{P}(D(K,C))}$		Need at least 3 rounds for rnd.
	Unconditional: $p_P(P C) = p_P(P)$		DES: 16 rounds, 56 bit key, 64 bit
Crypto.	Fixed/variable length input		block, f uses XOR of scheduled
	random functions		key with block through S-boxes
	Pseudo-random function:		Triple DES:
	deterministic, efficiently		$E(X) = DES_{K3}(DES_{K2}^{-1}(DES_{K1}(X)))$
	computable, cannot be	ECB	Cut message into n-bit blocks and
	distinguished by practical statistical/cryptanalytical test		encrypt separately: bad since
	from a random function		patterns + input alphabet is
	Random sources: hardware,	6 0 .0	limited (plaintext ASCII only)
	user behaviour, timing of	CBC	$C_i = E_K(P_i \oplus C_{i-1})$, random C_0
	peripheral, A/D noise, network	MAC	As CBC, but no C_0 and transmit
	timing, high-resolution time		only last C: can verify message if you know the secret key
Secure	Preimage resistance: for given	Hash From	$H = X \oplus E_K(X)$
Hashes	y, cannot find x st. $h(x) = y$	Blockcipher	$H_i = H_{i-1} \oplus E_{X_i}(H_{i-1})$
	Second preimage res.: for given x, cannot find x' st. $h(x') = h(x)$	Random Bit	$R_i = E_K(R_{i-1})$, replace K before
	Collision resistance: cannot find	Stream	$2^{\frac{n}{2}}$ numbers have been made
	x != y st. h(x) = h(y)	OFM	As above, $R_0 = 0$, $C_i = P_i \oplus R_i$
	Based on fixed input length PRF	CTR	$R_i = E_K(i+O)$, $C_i = P_i \oplus R_i$, could
	called a "compression function"		transmit O with message
	Input bitstring X padded by 1, then filled to block width by 0	CFB	$C_i = P_i \oplus E_K(C_{i-1})$, random C ₀
	$H_i = C(H_{i-1} \parallel X_i), \text{ fixed } H_0$	Diffie-	Large prime p, $g \in Z_p^*$, A B
	Birthday: k balls, n bins, prob. bin have 1 ball: $\frac{n!}{k!n^k}$, $k = \sqrt{n}$	Hellman	generate x, $y . Now:$
MAC	N II		A⇒B: $g^x \mod p$, B⇒A: $g^y \mod p$,
MAC	$MAC_{K}(M) = h(K \parallel M)$, but	EIGamal	each uses h(g ^{xy}) as shared key A publishes (p, g, g ^x) and keeps
	vulnerable to message extension attack with	LIGamai	x. Now: $B \Rightarrow A$: ($g^y \mod p$, ($g^{xy}M$)
	compression-h		mod p) and A calculates
Hash	$R_i = h(R_{i-1})$, random R ₀ , then		$[g^{xy}M][g^{y(p-1-x)}] \mod p = M$
Chain	store R_n in server, Rs to clients.	EIGamal	A generates y and solves xg ^y +ys
	Client sends R_{i-1} and server compares hash of to its R_i	Signature	= $M \pmod{p}$ for s, then certificate is (M, $g^{y} \mod p$, s). B

ΡΚΙ	can then test equation raised to the power of g on both sides Certificate authority issues Cert _C (A)={A,K _A ,T,L}K _c ⁻¹ , where C confirms K _A belongs to A for T to T + L: anyone who knows K _C can verify this. Now can establish chain of trusted certificates	Commercial	Data pump/diode Bell/LaPadula: subjects and objects have confidentiality labels, system prevents flow from high to low level objects, trusted subjects can override Covert channels: resource conflicts, timing, resource state Internal consistency (checked
Passwords	Reject delay, monitor failure, password strength, randomness	Integrity	automatically), external consistency (describes the real
Challenge Response Mutual Challenge Response One Time Key Generating	A \Rightarrow B: N B \Rightarrow A: h(K _{ab} N) or {N} _{Kab} A \Rightarrow B: N _a B \Rightarrow A: {N _a ,N _b } _{Kab} A \Rightarrow B: N _b Has attack where new session to A can be used to authenticate a B who does not know K: make K _{ab} different from K _{ba} B \Rightarrow A: C,{C} _{Kab} , C increases Card A _i has I, K _i = {i} _K . Now: A _i \Rightarrow B: i, B \Rightarrow A _i : N, A _i \Rightarrow B: h(K _i N)		world) Constrained Data Items only accessed via Transformation Procedures: certify TPs, some TPs can convert UDIs, all must log sufficient audit information Integrity Verification Procedures for every CDI Require authentication for subjects and checks on (subject, TP, CDI) triplets before allowing execution
Key Kerberos	Only one K, store in every device $A \Rightarrow S: A,B$ $S \Rightarrow A: \{T_s, L, K_{ab}, B, \{T_s, L, K_{ab}, A\}_{Kbs}\}_{Kas}$ $A \Rightarrow B: \{T_s, L, K_{ab}, A\}_{Kbs}, \{A, T_a\}_{Kab}$ $B \Rightarrow A: \{T_a+1\}_{Kab}$ Trusted third party, tickets have lifetime and timestamp, limit use	TCB OS Security	The parts of a system that enforce a security policy and whose correct operation is sufficient to ensure enforced Domain separation: protect TCB from external interference Reference mediation: accesses by untrusted subjects must be
Discretionar Access Control Mandatory Access Control UNIX	y Owners have discretion how they want to share their objects: identity based access System wide policy based access, e.g. prevents certain information flows. Enforced without owner consent User, group, outher bits	Security Classification	validated by the TCB Residual information protection: when allocated or deallocated DoD Orange Book. D: no auth, C1: discretionary, C2: auditing, ACLs, B1: labels, tests, B2: formal security policy, identify covert channels, B3: security
	SUID: effective, real and saved (initial effective) UIDs/GIDs Directories: read = list, write = remove files/empty dirs, execute = traverse, sticky =	Vulnerability	alarms, minimal TCB, A1: formally verified design Viruses spread where binary programs are exchanged and writable by other programs
Windows Principle Of Least Priv.	whether write is sufficient to delete files in the directory Access control lists stored with owner with object, object types have their own permission lists Implemented as transferable capabilities: combine the notion	Networks	Checks for data size, data content, boundary conditions, missing locks, race conditions, environment checks, auth. Protocols not designed for hostile environments, bus and broadcast technologies, DDOS
MAC Policy	of a reference and rights Air gap security		TCP: start sequence number acts as authentication nonce

SYN flood: local buffer allocated for every SYN packet DNS: cache unsolicited query Firewall: matches sets of IPs / port numbers, plausibility check on source IPs, logs + audits, but no protection against insiders or tunnels, disrupts deployment of new protocols

Security Policy Construction

- 1. Identify assets + value, vulnerabilities, threats, legal requirements, priorities
- 2. Work out suitable policy: first high level security policy that clarifies what are authorised, required and prohibited activities, states and information flows
- 3. Document high level policy in security policy document: reference for implement.
- Select and implement controls: general responsibilities, overall responsibility for maintenance, enforcement, review, owners for individual information assets, reporting responsibilities, process review, disciplinary action, incentives, user training, personnel security, physical security, segregation of duties, auditing, backup, media disposal, encryption etc....

Computer Misuse

Causing a computer to perform a function with the intent to access without authorization Unauthorised modification to impair operation / hinder access

DPA

- Fairly + lawfully proc.
- Proc. for limited purps.
- Adequate, relevant
- Accurate
- Not kept for longer than
 necessary
- Processed in accordance with subject rights
- Secure
- Not transferred to countries without prot.