
Probability

P (A,B) = P (A|B)P (B)

P (A) =
∑
B P (A|B)P (B)

P (B|A) = P (A|B)P (B)
P (A)

Information

Entropy

I = log2 p = −H

Using a logarithm makes the measure additive and monotonic.
The negation reflects the intuition that information should re-
flect the uncertainty removed by some probability being re-
alised.

An ensemble is the set of outcomes of one or more random
variables. The outcomes form a probability distribution.

H = −
∑
i pi log pi

A joint ensemble is an ensemble whose outcomes are pairs
drawn from two other ensembles. This defines a two dimen-
sional probability distribution.

H(X,Y ) =
∑
x,y p(x, y) log 1

p(x,y)

H(X|Y ) =
∑
y p(y)

[∑
x p(x|y) log 1

p(x|y)

]
=∑

x,y p(x, y) log 1
p(x|y)

We also have the Chain Rule and a consequence of it:

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )

H(X1, X2, . . . , Xn) ≤
∑n
i=1H(Xi)

Mutual Information

I(X;Y ) =
∑
x,y p(x, y) log p(x,y)

p(x)p(y) ≥ 0

I(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X) = H(X) +
H(Y )−H(X,Y )

Distance

D(X,Y ) = H(X,Y )− I(X;Y ) (satisfies standard axioms)

DKL(p||q) =
∑
x p(x) log p(x)

q(x) (not symmetric, but measures
inefficiency of assuming distribution is q(x) when it is p(x))

Bounds

Pe ≥ H(X|Y )−1
log|A| (Fanos Inequality, for outcomes A)

I(X;Y ) ≥ I(X;Z) (Data Processing Inequality, if X, Y, Z form
a Markov chain)

Codes

Consider an information source with memory (i.e. its FSA rep-
resentation has more than one state). The entropy of each state
is as normal based on the weights of the edges leaving it, and
the entropy of the system is (given that the probability of oc-
cupying state i is Pi):

H =
∑
i PiHi = −

∑
i

∑
j Pipi(j) log pi(j)

Fixed Length Codes

For N symbols, we require R = dlog2(N)e bits per block (known
as the code rate). Efficiency is given by:

η = H
R ≤ 1

This quantity is only 1 if the N symbols are equiprobable and
N is a power of two. We can overcome the second constraint by
encoding symbols as blocks of length J, such that:

R = dlogN
Je

J = dJ logNe
J

Variable Length Codes

A code is uniquely decodable if every output string can be pro-
duced by at most one input string. A code is a prefix code if
there is no code word which is a prefix of a longer code word.
A necessary condition for the existence of a prefix code where
binary code words lengths are ni is the Kraft-McMillan inequal-
ity:∑N
i=1

1
2ni ≤ 1

The source coding theorem states that for a discrete memoryless
source with finite entropy H; for any positive ε it is possible to
encode the symbols at an average rate R such that R = H + ε.

Discrete Memoryless Channels

Characterize these with an input alphabet X and output alpha-
bet Y, with corresponding random variables. Further introduce
a matrix of transition probabilities p(yk|xj) = P (Y = yk|X =
xj), such that

∑K
k=1 p(yk|xj) = 1. If the input symbols are a

subset of the output symbols we can define the probability of
error as:

Pe =
∑K
k=1

∑J
j=1,j 6=k p(yk|xj)p(xj)

The special case of a binary symmetric channel is a discrete
memoryless channel where X = Y = {0, 1} and where there is
a common probability of error p.

Note that we can regard the alphabets as ensembles if we have
probability information and hence define mutual information,
entropy and so on. We can now define channel capacity as:

C = max{p(xj)} I(X ;Y)
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Shannon’s channel coding theorem states that for a channel of
capacity C and a source of entropy H; if H ≤ C, then for an
arbitrarily small ε, there exists a coding scheme such that the
source is reproduced with a residual error rate of less than ε.

Repetition Codes

In this code we transmit n = 2m + 1 bits per symbol, so that
we only get an error if m+ 1 or more bits are received in error.
Given a binary symmetric channel, this means:

Pe =
∑2m+1
i=m+1

(
2m+ 1

i

)
pi(1− p)2m+1−i

Hamming Codes

A 7/4 Hamming Code requires that we transmit the 4 bits of
the underlying symbol (as bits 3, 5, 6 and 7 of the output) along
with some others:

b4 = b5 ⊕ b6 ⊕ b7

b2 = b3 ⊕ b6 ⊕ b7

b1 = b3 ⊕ b5 ⊕ b7

Upon reception the syndromes are computed:

s4 = b4 ⊕ b5 ⊕ b6 ⊕ b7

s2 = b2 ⊕ b3 ⊕ b6 ⊕ b7

s1 = b1 ⊕ b3 ⊕ b5 ⊕ b7

If s4s2s1 = 0 then there is no error, otherwise that is the index
of the bit in error. This uses 3 bits to correct 7 error patterns
and transfer 4 useful bits. They are perfect codes since in gen-
eral they use m bits to correct 2m− 1 errors. They exist for all
pairs (2n − 1, 2n−1). The probability of error is:

Pe =
∑7
i=2

(
7
i

)
pi(1− p)7−i

Continuous Information

A naive definition of entropy leads to an integral which is not
defined. Hence we define differential entropy as follows:

h(X ) =
´∞
−∞ p(x) log

(
1

p(x)

)
dx

All other definitions are analogous to their discrete counter-
parts. We find that the maximum differential entropy for a
given variance is h(X) = 1

2 log(2πeσ2) which is realized by the

Gaussian distribution p(x) = 1√
2πσ

e−
(x−µ)2

2σ2

When we come to consider ensembles, we in particular consider
those of functions.

Channel Capacity

Consider signals with average power P, time limited to T and
band limited to W. These may be affected by additive Gaussian
white noise N such that σ2 = N0W where N0 is the power
spectral density. In this case:

h(Y |X) = h(N) = 1
2 log(2πeN0W )

And so when we maximize mutual information to find the chan-
nel capacity we find that the maximum is achieved when X and
Y are Gaussian, X having variance P and Y having variance
P +N0W . Now:

C = 1
2 log(1 + P

N0W
)bits/symbol = W log2(1 + P

N0W
)bits/s

The fractional quantity is known as the signal to noise ra-
tio. This statement of capacity is known as Shannon’s chan-
nel capacity theorem. Note that as the SNR increases C in-
creases without limit, but as W increases we reach the limit
C → P

N0
log e. We can define energy per bit, Eb = P

C .

Fourier Analysis

Continuous Transform

Consider real valued, complex functions f(x). We will use the
cosine and sine series as the basis. Now:

f(x) = a0
2 +

∑∞
n=1 ancos(nx) + bnsin(nx)

an = 1
π

´ 2π

0
f(x)cos(nx)dx where n ≥ 0

bn = 1
π

´ 2π

0
f(x)sin(nx)dx where n ≥ 1

If f(x) = f(−x) then bn = 0, if f(x) = −f(−x) then an = 0.
We can also work with complex numbers:

f(x) =
∑∞
−∞ cne

inx

cn = 1
2π

´ 2π

0
f(x)e−inxdx

The Fourier Series is the best approximation to f(x) in terms
of mean squared error for linear combinations of sin and cos
terms. Some interesting properties are:

1. If f(x) is bounded in (0, 2π) and piecewise continuous then
the Fourier series converges to {f(0+)+f(2π−)}/2 at 0 and
2π

2. If f(x) is continuous within (0, 2π) the sum of the series is
equal to f(x) at all points

3. an and bntend to 0 at least as fast as 1
n (we can make finite

approximations)

Properties:

1. If g(x) real then G(−k) = G ∗ (k)
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2. Linearity: ag1(x) + bg2(x) 
 aG1(x) + bG2(X)

3. Time Shift: g(x− a) 
 e−ikaG(k)

4. Frequency Shift: g(x)eiλx 
 G(k − λ)

5. Differentiation: g(n)(x) = (ik)nG(k)

Define convolution as (f ∗ g)(x) =
´∞
−∞ f(y)g(x− y)dy. Convo-

lution in one domain is multiplication in the other.

Sampling

Define the ideal sampling function of interval X as:

δX(x) =
∑
n δ(x− nX) 
 1

X

∑
m δ(kX − 2πm)

gX(x) = g(x)δX(x) (a sampled function g)

The Nyquist rate is now defined as fs = 2W for a signal band
limited to W . This is the minimum sampling rate required to
prevent aliasing.

Discrete Transform

Consider a data sequence gn of length N, possibly sampled from
an analogue signal s(t) such that gn = s(nTs). Now:

Gk =
∑N−1
n=0 gne

− 2πi
N kn

gn = 1
N

∑N−1
k=0 Gke

2πi
N kn

Properties:

1. If gnis real then G−k = G∗k

2. Since gnis periodic, GN
2 −k

= G∗N
2 +k

3. Linearity: agn + bhn has DFT aGk + bHk

4. Shifting: for the rotated sequence gn−n0 the DFT is
Gke

− 2πikn0
N

Define circular convolution as (g ∗h)k =
∑N−1
r=0 grhn−r. Again,

multiplication in one domain is convolution in the other.

Fast Fourier Transform

Observe that, if ω = e−
2πi
N :

Gk =
∑2L−1
n=0 gnω

nk =
∑L−1
n=0(gn + gn+L(−1)k)ωkn

This has split the DFT into two smaller DFTs. The even and
odd terms of G can now be separated out. If N is a power of
2, this can be done logN times to obtain N single point trans-
forms. Each “butterfly” requires one complex multiplication
and two additions hence the FFT requires N

2 logN multiplica-
tions and N logN additions. This is O(N logN) rather than
the naive O(N2) complexity.

To find the location of Gkin the FFT output array, we can take
k as a binary number of logN bits, reverse them, and treat that
as an index into the array.

We can rewrite an inverse FFT like so:

Ng∗n =
∑N−1
k=0 G ∗k ωkn

Which is just a DFT of the complex conjugates of the Fourier
coefficients, hence FFT can be used to implement IFFT.

Quantization

Logan’s Theorem

Logan’s theorem states that if a signal f(x) is band-limited
to one octave or less (i.e. kmax ≤ 2kmin) and f(x) contains
no complex zeroes in common with its Hilbert transform, then
the original signal can be recovered up to an amplitude scaling
constant by the set of zero-crossings of f(x) alone. However:

• No stable constructive algorithm for making this work is
known, although it exists

• It cannot be easily generalized to higher dimensions due to
the octave constraint. If an annulus in the frequency do-
main was chosen then the projection onto any axis would
not be band-limited to an octave, and if disjoint squares
were chosen then the transform would be anisotropic. Fur-
thermore there are infinite complex zeroes in such a case

Information Diagrams

The similarity theorem states that f(ax) 

∣∣ 1
a

∣∣F (ka ). Gabor
further proved that (∆x)(∆k) ≥ 1

4π (i.e. the Gabor-Heisenberg-
Weyl Uncertainty Principle), where ∆x and ∆k are the nor-
malized variances (second-moments) of the time and frequency
domain functions respectively.

Areas in the information diagram of this size are called logons.
The family of signals which achieve this minimal area are the
Gabor wavelets:

f(x) = e−
(x−x0)2

a2 e−ik0(x−x0)

These are localized at epoch x0, modulated by frequency k0 and
have size constant a, and may be visualized by decaying spirals
in the complex plane which evolve along the x axis. They are
self-Fourier, and the transform is as follows:

F (k) = e−(k−k0)2a2
e−ix0(k−k0)

Unfortunately Gabor wavelets are mutually non-orthogonal, al-
though methods do now exist to obtain coefficients for this ba-
sis. Note that the parameter a in some sense unifies the time
and frequency domains.
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Kolmogorov Complexity

The Kolmogorov complexity, K of a string is the length in bits
of the shortest program which produces that string. It is ap-
proximately equal to the entropy H of the distribution from
which the string is a randomly drawn sequence.

A sequence of length n is said to be algorithmically random if
its Kolmogorov complexity is at least n. An infinite string is
defined to be incompressible if its Kolmogorov complexity in
the limit as the string gets arbitrarily long approaches n. The
Strong Law of Large Numbers for Incompressible Sequences
asserts that the proportions of 0s and 1s in any incompressible
string must be nearly equal.
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