
Indexing

The task of finding terms that describe documents well.

Manual vs. automatic indexing: how to manipulate and weight
terms?

Vocabularies:

• Fixed:

– High training effort

– Out of band scheme changes

– High precision searches that work well for closed col-
lections (e.g. library)

• Free:

– Index term set inferred, not predefined

– Must deal with synonymy and polysemy, capitalisa-
tion, stemming

– Might use phrases rather than simple words

Inverted files: mapping of search terms to document IDs, oc-
currence frequency term offset

Boolean Model:

• Presence of a term in a document is necessary and sufficient
for match

• Does not typically provide for ranking: relevance is a bi-
nary decision

Vector Space Model:

• Documents and queries represented in vector space whose
dimensions are terms

• Proximity measures:

– Must be symmetric and minimal for identity

– Distance measures are additionally non-negative and
have the triangle property

– Binary:

∗ rawoverlap(X,Y) = |X ∩ Y |
∗ dice(X,Y) = 2|X∩Y |

|X|+|Y |

∗ jacc(X,Y) = |X∩Y |
|X∪Y |

∗ overlapcoefficient(X,Y) = |X∩Y |
min(|X|,|Y |)

∗ cosine(X,Y) = |X∩Y |√
|X||Y |

– Weighted:

∗ Dice and Jaccard measures don’t work well for
IR due to the use of sparse vectors with differing
lengths

∗ −→wiis a vector of terms occurring in document i,
t is the number of index terms and wi,j is the
weight of term j in the terms of document i

∗ cos(−→wi,−→wk) =
−→wi−→wk
|−→wi||−→wk|

where || denotes the dis-
tance metric rather than vector length

∗ euclidean(−→wi,−→wk) =
√∑d

j=1(wi,j − wk,j)2

∗ manhattan(−→wi,−→wk) =
∑d
j=1 |wi,j − wk,j |

– TF*IDF:

∗ freqw,d is the frequency of word w in document
d

∗ nw,D is the number of documents in the collection
D that contain word w

∗ idfw,D = log |D|
nw,D

∗ tfw,d = freqw,d
∗ (tf ∗ idf)w,d,D = tfw,didfw,D

∗ tfnorm,w,d = freqw,d
maxl∈dfreql,d

∗ (tf ∗ idf)norm,w,d,D = tfnorm,w,didfw,D

Zipf’s law:

• frequency(wordi) = 1
iθ
frequency(word1) where wordiis

the word with the ith rank and typically 1.5 < θ < 2

• Mid-frequency words are the best indicators of what the
document is about

Porter stemmer:

• Works without a dictionary and deals with inflectional and
derivational morphology, but not with root changes

• Parse words as [C](V C){m}[V] where m is called the mea-
sure

• Rules:

– Are of the form (condition)S → S′ where S is a suffix

– Conditions can be on measure excluding the suffix of
the rule under consideration, the shape of the word
piece or involve logical operations

Evaluation

Goal is to test system parameters (methods of term choice,
matching algorithms etc) while ignoring environment variables
(particular documents and users).

Test collections consist of:

• A large document set

• Queries or topics with a short description of the informa-
tion need

1

• Relevance judgments, ideally made by the person who cre-
ated the query

Recall: |relevant∩retrieved||relevant|

Precision: |relevant∩retrieved||retrieved|

Accuracy: |relevant∩retrieved|+|notretrieved∩notrelevant||everything| (conflates
two measures)

Typically recall rises with document retrieved and precision
falls, so a graph of one against the other describes a curved
frontier

Most tasks are precision-critical (e.g. in web search where
there is much redundant information) but other tasks can be
accuracy-critical (e.g. patent search)

Relevance is subjective and situational (e.g. due to novelty):
this is mitigated by the use of guidelines and extensive sampling

Pooling:

• Allows relevance judgments to be made on very large doc-
ument collections

• The top N results from the systems under test are pooled
together along with those gathered from unrestricted man-
ual runs

• Relevance judgments are made on this pool, with those
outside the pool considered irrelevant

Measures:

• Sensible precision/recall data points are those after each
relevant document has been seen

• Fα = PR
(1−α)P+αR , commonly used with α = 1

2

• MAP = 1
N

∑N
j=1

1
Qj

∑Qj
i=1 P (doci) where Qj is the num-

ber of relevant documents for query j, N is the number of
queries, P (doci) is the precision at the ith relevant docu-
ment

• P11pt = 1
11

∑10
j=0

1
N

∑N
i=1 P̃i(rj)

where rj = j
10 and P̃i(rj) ={

max(rj ≤ r ≤ rj+1)Pi(R = r) if Pi(R = r) exists
P̃i(rj+1) otherwise

Search Engines

Backlink counting:

• Return the pages with the most backlinks

• Does not take account of page quality

PageRank:

• Simulation of a random surfer, where links are followed
randomly with probability q and occasionally jumps are
made to another random page with probability 1− q

• Rank sources are added to counteract rank sinks (pages
with no outgoing links)

• −→r = c(qA + 1−q
N 1)−→r where Auv =

{
1
Nv

if ∃v → u

0 otherwise
and

−→r is the PageRank vector

• Iterate to find −→r and terminate when the magnitude of
the movement falls below a threshold

• There is a difference between linking behavior and actual
usage data

Named Entity Recognition

ENAMEX (person/organization/location), TIMEX
(time/date) etc

Approaches include regular expressions, name gazetteers (al-
though these are impractical for last names, due to produc-
tiveness, overlap with nouns/verbs/adjectives and ambiguity of
name types)

Cascading NER:

• Use machine learning to decide the type of NE, using the
internal phrase structure of a name (substrings, suffixes,
prefixes)

• Make high precision decisions first

• Assume one name type per discourse

• Mikheev Algorithm:

1. Apply sure fire rules to tag definite NEs

2. Use machine learning to find variants of the tagged
names in the entire text

3. Apply relaxed rules to tag further NEs

4. Use machine learning again to find new variants

5. Apply specialized maximum-entropy model to the ti-
tle

Information Extraction

Lexico-semantic patterns:

• “Flattened-out” semantic representations with lexemes
hard-wired into them

2

• Matching is string based, with pattern generalization being
accomplished only by hand

Template mining:

• Apply hard (selectional) and soft (semantic preferences)
constraints for slot fillers

• Given filled template plus raw text find trigger words and
enabling conditions

• Heuristics take the form of syntactic patterns (e.g. active-
verb prep <np>) which are filled with trigger words by the
algorithm

• Typically followed by human evaluation of suggested pat-
terns

Snowball

Bootstrapped algorithm which makes use of a working table
of <organization, location> tuples (<o, l> tuples). To begin,
the table is seeded with a number of examples by humans who
have inspected the corpus and a named entity recognizer is run
over the corpus. Finally, an algorithm is launched to iteratively
discover patterns which let it fill in the table further:

1. Identify occurrences of the example <o, l> tuples it knows
about so far in the documents

2. Extraction patterns identified based on the found contexts
which contain known <o, l> tuples

3. Patterns are evaluated to find the best ones, and used to
select new <o, l> tuples

4. New tuples are evaluated and if they are found to be reli-
able they are entered into the table of known <o, l> tuples

5. Repeat from step 1 unless no new sufficiently reliable <o,
l> tuples are found in step 4

Occurrences of known tuples are found by scanning the input
documents for instances of the words that occur within some
fixed number of words from each other (e.g. 10 words). The
context is then changed into a pattern of the form <left, tag1,
middle, tag2, right>, where the tags are either “location” or “or-
ganization”. The left, middle and right parts are lists of words
with associated weights (assigned as a function of frequency of
the word in context). These vectors are normalized and then
scaled by constants Wleft,Wmiddle and Wright.

Degree of matching between two tuples can be defined for two
tuples with the same words and tags as the sum of inner prod-
ucts of the word weightings: we call thisMatch(P1, P2). Given
this matching formula, the vectors can be clustered by a mini-
mum similarity threshold τsim, to obtain cluster centroids which
are word weighting vectors. These, combined with the original

tags, are used to form the generalized pattern, which is further
associated with the contexts it came from and how far each
context was from the centroid.

In order to evaluate these generalized patterns, we seek pro-
ductive and reliable patterns. Productivity is enforced by dis-
carding patterns with less than τsuptuples in support (in the
corresponding cluster). Reliability is estimated by computing
the ratio of the number of times the pattern produces evidence
that agrees with what is in our database (times the log of it-
self, to favor productive patterns) with the number of times
the pattern produces any tuple. This is further normalized.
This normalized confidence measure of a pattern P is called
Conf(P). If desired, patterns with low confidence can then be
discarded. We can then define the confidence of a tuple T:

Conf(T) = 1−
|P |∏
i=0

(1− Conf(Pi)Match(Ci, Pi))

Where:

• P = {Pi} is the set of patterns that generated the tuple

• Ci is the context associated with an occurrence of T for Pi

• Match(Ci, Pi) is the goodness of a match between Pi and
Ci

This works due to the assumption that for a tuple T to be
valid at least one pattern must match the currently discovered
text of T. The final step in the algorithm is to discard those
tuples with confidence less than some threshold (say τt), and
then update a confidence attached to every pattern in the table
by the formula:

Confi+1(P) = Conf(P)
1

2
+ Confi(P)

1

2

Where i records the iteration number, reflecting the fact that
the confidence of a pattern we generate via this algorithm will
alter with every iteration as we consider new evidence.

Question Answering

Evaluation:

• Wrong answers are OK if they are supported by the text

• Ambiguous answers are considered incorrect

• Mean Reciprocal Rank (MRR): look at top five answers,
per question score RRiis 1

ri
where riis the rank at which

first correct answer occurs, thenMRR is mean of this over
all documents i

• Accuracy: |SubmittedAnswers∩CorrectAnswers||CorrectAnswers|

3

• Confidence Weighted Score:
1
Q

∑Q
i=1

|Correct∩AnswersUpToi|
i where Q is the num-

ber of questions and AnswersUpToi is the i question
answers with highest confidence

Expected Answer Type:

• Many questions expect a NE as their answer, so try and
identify that

• FST rules for expected answer type,
e.g. Name NP(city|country|company) →
CITY|COUNTRY|COMPANY

• Direct matching of question words, e.g. who/whom →
PERSON

SMU System:

• Parse question for keywords, answer type, question predi-
cate structure

• Index into documents with keywords, refine results by an-
swer type and then compare to predicate structure

• Feedback loops at every stage

– Morphological: add keywords to query based on an-
swer type, e.g. if includes “who” with “invent” add
“inventor”

– Lexical: add keywords based on relationships such as
synonymy, e.g. add “distance” if question asks how
“far” something is

– Semantic alternations and paraphrases

MS System:

• Deep reasoning only necessary if search ground is restricted

• Minimal processing: remove question words, add morpho-
logical variations, reorder words

• Query generation linearly moves the finite verb (e.g. is)
through the query and outputs a confidence and position
in the text where the answer is expected

• Sum weighted n-grams from Google query and then com-
bine similar ones

• Back project answers into the TREC corpus by using a
traditional IR engine

Summarization

Informative/indicative and abstract (generated)/extract di-
mensions.

Ideally truth preserving and coherent

Deep model: go via semantic representation of full text, but
bottleneck in text analysis

Fact extraction:

• Reason with templates which are generated by combining
others

• The most important template is chosen for generation

• Template combination/modification rules:

– Change of perspective: if information from a source
conflicts over time report both pieces

– Contradiction: conflicting information resolved by
choosing that from independent sources

– Addition: include additional information from later
articles

– Refinement: prefer specific information

– Agreement/no information: report this to give reader
information

– Superset: combine incomplete information from many
sources

– Trend: report similar patterns over time as one state-
ment

• Limited by domain dependence of templates and rules

Text extraction:

• Split text into units which are assigned importance using
sentential/relational features

• Those units with the highest score are extracted verbatim

• Sentential features:

– The number of concepts in a unit (according to tf ∗
idf)

– The number of concepts occurring in the title that
appear in a unit

– How close the text is to the top

– Give extra weight to the first sentence in a paragraph

– Sentence length

• Feature combination:

– Manual weighting of feature scores

4

– Naive-Bayes classification: P (s ∈ S|F1, . . . , Fk) ≈
P (s∈S)

∏k
j=1 P (Fj |s∈S)∏k

j=1 P (Fj)
where S is the summary, s is

the sentence and Fi are the features chosen

Problems with coherence (e.g. dangling anaphora, but can be
fixed by resolution and inclusion/discarding) and cohesion (e.g.
concepts and agents are not introduced, narrative flow is lost)

Evaluation:

• Solicit subjective judgments: need to ensure all subjects
understand the same judging criteria

• Gold standard comparison: unfortunately humans do not
agree on what a good summary is

• Task-based evaluation: how well can humans perform a
task with this summary? Expensive!

5

