
Λ-Calculus Pure: e ::= x | e e’ | λx.e 
 Applied: e ::= x | e e’ | λx.e | c 
 Combinator: e ::= e e’ | c 
 Syntactic equality: ≡ 
 Define bound, free variables in the 

obvious way 
Substitution 



 


else

]/[
x

yxL
yLx  



 


else])/[.(

).(
]/)[.(

yLMx

yxMx
yLMx




  

])/[],/[(]/)[( yLNyLMyLMN   

 ]/[ xNM  ok if 0)()(  NFVMBV  

Conversion ])/[.().( xyMyMx    

 ]/[)).(( xNMNMx    

 MMxx  )).((  

 Watch for variable capture in α,η 
 Obvious context rules allow 

reduction inside λ, and to left and 
right of application 

 NM   if NM   or NM   

 *)()(   (reflexive, transitive) 

Normal 
Forms 

A term with no reductions is in 
normal form, some terms have no 
normal form (e.g. ).)(.( yyyxxx  ) 

 A term is in WHNF if the only 
reduction it admits is inside λ 

 A term is in HNF if it looks like 
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 NFHNF, HNFWHNF 

Equality *))()(()( 1  

 This is an equivalence relation 
 ][][ NCMCNM   

Church-
Rosser 

If NM   then LNLML  .  

i.e. confluence 
 If N in NF then NM    

 If M,N in NF then NM   

 If M,N in NF and distinct then 
there is no way of transforming 
one to another 

Normal 
Order 
Reduction 

This gives a normal form if one 
exists: at each step perform the 
leftmost outermost β reduction 
first (leave η until last) 

 Almost call-by-name 
 

Booleans xxytrue . , yxyfalse .  

 pxypxyif .  

 Operators are easy 
Pairs fxyxyfpair .  

 ptruepfst . , pfalsepsnd .  

Sums pairtruexxinl .  

 pairfalseyyinr .  

 ))())(()((. sndsgsndsffstsifsfgcase   

Natural 
Numbers 

xfx.0  , fxfx.1   

)(. nfxmfmnfxadd   

 xnfmmnfxmult )(.  

 nmfxmnfx.exp   

 )(. nfxfnfxsuc   

 truefalsexnniszero ).(.   
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pairtruexsndyfpairfalsesndy

pairfalsefstyifynsndnfxpre 
 

 npremmnsub .  

Lists Can encode lists as pairs, with one 
cons cell being two nested pairs 

 

Recursion Can’t do this directly because such 
terms would have infinite symbols 

 Use fixed point combinator Y such 
that Y F = F (Y F) 

 ))(.))((..( xxfxxxfxfY   

ISWIM Sugaring: let, letrec, where, if, 
pattern matching, n-tuples 

 Constants: integers, arithmetic, 
Booleans, relations (e.g. >, not) 

 δ-reductions reduce constants 
 Mutable state, so call by value: 

desugaring for if delays evaluation 
 Values: constants and functions 

(expressions in WHNF: call-by-value) 
Closures Package λ-abstraction with its current 

environment and bound variable 
(variable to bind into environment 
when the closure is called) 

SECD Stack, environment, control (list of 
commands: λ-terms or “app”), dump 
(empty or machine state, SECD form) 

 Initial state has (S, E, C, D) = (-, -, 
M, -) for program M  

 Do state transition on top of control 
SECD Transitions 

(S, E, λx.M;C, D)  (Clo(x, M, E); S), E, C, D) 

(S, E, MN;C, D)  (S, E, N;M;app;C) 

(f;a;S, E, app;C, D)  (f(a);S,E,C,D) 

(Clo(x,M,E’);a;S, E, app;C, D)  (-, x=a;E’, M, 

(S,E,C,D)) 

(a, E’, -, (S,E,C,D))  (a;S, E, C, D) 
Compiled 
SECD 

Pre-compile the λ-term for speed e.g. 

      appMNMN ;;  

 Could add many commands, e.g. if, 
tailapp ((Clo(x,C,E’);a, E, tailapp, D) 

 (-, x=a;E’, C, D)) 
SECD The usual Y fails due to call-by-value. 



Recursion Can use modified Y combinator 
)).(.))(.(..( xxyyfxxxyyfxf   but it 

is slow: make closures with environ. 
pointing back to closure (does not 
work for non-funs) 

Laziness When a function is called, the 
argument is stored unevaluated in a 
thunk, evaluated when a strict built 
in function is called 

 Update the environment with the 
value of the argument after the first 
evaluation (call-by-need) 

 

Combinators PKPQ   

 )(QRPRSPQR   

 Weak reduction since partially 
applied combinators do not reduce 

 SKKI   or define directly 
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 CL)(  recursively applies *  to a 

λ-term (innermost terms first) to 
convert the entire term 

 )(  is trivial (and only causes 

linear code size increase) 
 Free variables but not equality is 

preserved (due to weak reduction) 
 Adding extensionality (a new rule 

for proving equality in the 
combinatory logic) means that 
equality IS preserved! 

Turners 
Translation QPRCPQR

QRPBPQR
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 As before, but with: 

PPxxT .  (x nf in P) 

).(. QxBPPQx TT    (x nf in P) 

QPxCPQx TT ).(.    (x nf in Q) 

).)(.(. QxPxSPQx TTT    (else) 

 Only quadratic blowup in size 
 

Graph 
Reduction 

Represent λ as graph with sharing, 
destructively transform 

 Transform leftmost branch, if 
function is a strict constant then 
recursively transform its args 

 
Continuations Functions that never return but 

exists by calling another function is 
in continuation passing style: 
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 The CPS transform produces an 
expression with only one reduction 
possible (CPS encodes control) 

 Reverse transform by applying I 
 Slightly less cheat-y transform: 
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 Analogous to ret. addr., arg. pair 
Side Effects Model using a world threaded 

through the program 
 Use each world exactly once 
 Make things simpler w/ MONADS! 

return, >>= 
Type 
Inference 

Use unification: give all variables 
unknown type variables, constants 
their declared type then propagate 

 Need let polymorphism to allow 
multiple unifications, but has 
interesting corner cases (y in λx.let 
y = (x, λz.z) in e’) 

 


