Λ-Calculus	Pure: e ::= x e e' $\lambda x.e$ Applied: e ::= x e e' $\lambda x.e$ c Combinator: e ::= e e' c Syntactic equality: =	Sums	$inl = \lambda x. pairtruex$ $inr = \lambda y. pairfalsey$ $case = \lambda sfg.if (fsts)(f(snds))(g(snds))$
	Define bound, free variables in the obvious way	Natural Numbers	$0 = \lambda f x. x, 1 = \lambda f x. f x$ add = $\lambda m n f x. m f (n f x)$ mult = $\lambda m n f x m (n f) x$
Substitution	$x[L/y] = \begin{cases} L & x \equiv y \\ x & \text{else} \end{cases}$		$exp = \lambda mnfx.nmfx$ suc = $\lambda nfx.f(nfx)$
	$(\lambda x.M)[L/y] \equiv \begin{cases} (\lambda x.M) & x \equiv y \\ (\lambda x.M[L/y]) & \text{else} \end{cases}$		iszero = $\lambda n.n(\lambda x. false)$ true pre = $\lambda nfx.snd(n(\lambda y.if(fsty)(pairfalse)$
	$M[N/x] \text{ ok if } BV(M) \cap FV(N) = 0$		(sndy))(pairfalse(f(sndy))))(pairtruex))
Conversion	$(\lambda x.M) \rightarrow_{\alpha} (\lambda y.M[y/x])$	Lists	Can encode lists as pairs, with one
	$((\lambda x.M)N) \rightarrow_{\beta} M[N/x]$		cons cell being two nested pairs
	$(\lambda x.(Mx)) \rightarrow_{\eta} M$ Watch for variable capture in a, η	Recursion	Can't do this directly because such terms would have infinite symbols
	Obvious context rules allow reduction inside λ , and to left and right of application		Use fixed point combinator Y such that Y F = F (Y F) $Y = \lambda f . (\lambda x. f (xx))(\lambda x. f (xx))$
	$M \to N$ if $M \to_{\beta} N$ or $M \to_{\eta} N$	ISWIM	Sugaring: let, letrec, where, if,
	$(\Rightarrow) = (\rightarrow)^*$ (reflexive, transitive)		pattern matching, n-tuples
Normal Forms	A term with no reductions is in normal form, some terms have no		Booleans, relations (e.g. >, not)
	normal form (e.g. $(\lambda x.xx)(\lambda y.yy)$)		δ-reductions reduce constants
	A term is in WHNF if the only		Mutable state, so call by value:
	reduction it admits is inside λ		Values: constants and functions
	A LETTI IS IT FINE IT LOOKS THE $\lambda x_1 \dots x_m \cdot yM_1 \dots M_k$		(expressions in WHNF: call-by-value)
	NF HNF, HNF WHNF	Closures	Package λ -abstraction with its current
Equality	$(=) = ((\Longrightarrow) \cup (\Longrightarrow)^{-1})^*$		(variable to bind into environment
	This is an equivalence relation		when the closure is called)
Churrah	$M = N \Longrightarrow C[M] = C[N]$	SECD	Stack, environment, control (list of
Cnurcn- Rosser	If $M = N$ then $\exists L.M \Rightarrow L \land N \Rightarrow L$		commands: λ -terms or "app"), dump
	If N in NF then $M \Rightarrow N$		Initial state has $(S, E, C, D) = (-, -, -, -, -, -, -, -, -, -, -, -, -, -$
	If M,N in NF then $M \equiv N$		M, -) for program M
	If M,N in NF and distinct then		Do state transition on top of control
	one to another	SECD TRANSITIONS (S E $\lambda x M \cdot C D) \Box (Clo(x M E) \cdot S) E C D)$	
Normal	This gives a normal form if one	(S, E, MN;C,	(C, C) = (C, C, C, C) (C, C, C
Order	exists: at each step perform the	(f;a;S, E, app;C, D) □ (f(a);S,E,C,D)	
Reduction	leftmost outermost β reduction first (leave n until last)	(Clo(x,M,E'))	;a;S, E, app;C, D) □ (-, x=a;E', M,
	Almost call-by-name	(a, E', -, (S,I	E,C,D)) 🗆 (a;S, E, C, D)
Booleans	$true \equiv \lambda x y. x, \ false \equiv \lambda x y. y$	Compiled SECD	Pre-compile the λ -term for speed e.g. [MN] = [N]; [M]; app
	$if = \lambda pxy.pxy$		Could add many commands, e.g. if,
Paire	Uperators are easy $pair = \lambda xyf fxy$		tailapp ((Clo(x,C,E');a, E, tailapp, D)
. 4113	$fst \equiv \lambda p. ptrue, \ snd \equiv \lambda p. pfalse$	SECD	The usual Y fails due to call-by-value.

Recursion Laziness	Can use modified Y combinator $\lambda f.(\lambda x.f(\lambda y.xxy))(\lambda x.f(\lambda y.xxy))$ but it is slow: make closures with environ. pointing back to closure (does not work for non-funs) When a function is called, the argument is stored unevaluated in a thunk, evaluated when a strict built	$\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	in function is called Update the environment with the value of the argument after the first evaluation (call-by-need)	Continuations	Functions that never return but exists by calling another function is
Combinato	rs $KPQ \rightarrow_{\omega} P$ $SPQR \rightarrow_{\omega} PR(QR)$ Weak reduction since partially applied combinators do not reduce $I \equiv SKK$ or define directly $\lambda^* x.x \equiv I$ $\lambda^* x.P \equiv KP$ $\lambda^* x.PQ \equiv S(\lambda^* x.P)(\lambda^* x.Q)$ $(-)_{cL}$ recursively applies λ^* to a λ -term (innermost terms first) to convert the entire term $(-)_{\lambda}$ is trivial (and only causes linear code size increase) Free variables but not equality is preserved (due to weak reduction) Adding extensionality (a new rule for proving equality in the combinatory logic) means that equality IS preserved! $BPQR \rightarrow_{\omega} P(QR)$ $CPQR \rightarrow_{\omega} (PR)Q$ As before, but with: $\lambda^T x.Px \equiv P$ (x nf in P) $\lambda^T x.PQ \equiv BP(\lambda^T x.Q)$ (x nf in P) $\lambda^T x.PQ \equiv S(\lambda^T x.P)(\lambda^T x.Q)$ (else) Only quadratic blowup in size	Side Effects Type Inference	in continuation passing style: $[x] = \lambda k.kx$ $[c] = \lambda k.kc$ $[\lambda x.M] = \lambda k.[M](\lambda m.[N](\lambda n.(mn)k))$ The CPS transform produces an expression with only one reduction possible (CPS encodes control) Reverse transform by applying I Slightly less cheat-y transform: $[x] = \lambda k.kx$ $[c] = \lambda k.kc$ $[\lambda x.M] = \lambda k.k(\lambda(k', x)([M]k'))$ $[MN] = \lambda k.[M](\lambda m.[N](\lambda n.m(k, n)))$ Analogous to ret. addr., arg. pair Model using a world threaded through the program Use each world exactly once Make things simpler w/ MONADS! return, >>= Use unification: give all variables unknown type variables, constants their declared type then propagate Need let polymorphism to allow multiple unifications, but has interesting corner cases (y in $\lambda x.let$ $y = (x, \lambda z.z)$ in e')
Graph Reduction	Represent λ as graph with sharin destructively transform Transform leftmost branch, if function is a strict constant then recursively transform its args	g,	