
Λ-Calculus Pure: e ::= x | e e’ | λx.e
 Applied: e ::= x | e e’ | λx.e | c
 Combinator: e ::= e e’ | c
 Syntactic equality: ≡
 Define bound, free variables in the

obvious way
Substitution



 


else

]/[
x

yxL
yLx



 


else])/[.(

).(
]/)[.(

yLMx

yxMx
yLMx






])/[],/[(]/)[(yLNyLMyLMN 

]/[xNM ok if 0)()( NFVMBV

Conversion])/[.().(xyMyMx  

]/[)).((xNMNMx  

 MMxx  )).((

 Watch for variable capture in α,η
 Obvious context rules allow

reduction inside λ, and to left and
right of application

 NM  if NM  or NM 

 *)()( (reflexive, transitive)

Normal
Forms

A term with no reductions is in
normal form, some terms have no
normal form (e.g.).)(.(yyyxxx )

 A term is in WHNF if the only
reduction it admits is inside λ

 A term is in HNF if it looks like

km MyMxx 11

 NFHNF, HNFWHNF

Equality *))()(()(1

 This is an equivalence relation
][][NCMCNM 

Church-
Rosser

If NM  then LNLML  .

i.e. confluence
 If N in NF then NM 

 If M,N in NF then NM 

 If M,N in NF and distinct then
there is no way of transforming
one to another

Normal
Order
Reduction

This gives a normal form if one
exists: at each step perform the
leftmost outermost β reduction
first (leave η until last)

 Almost call-by-name

Booleans xxytrue . , yxyfalse .

 pxypxyif .

 Operators are easy
Pairs fxyxyfpair .

 ptruepfst . , pfalsepsnd .

Sums pairtruexxinl .

 pairfalseyyinr .

))())(()((. sndsgsndsffstsifsfgcase 

Natural
Numbers

xfx.0  , fxfx.1 

)(. nfxmfmnfxadd 

 xnfmmnfxmult)(.

 nmfxmnfx.exp 

)(. nfxfnfxsuc 

 truefalsexnniszero).(. 

))))))((())((

)((.((.

pairtruexsndyfpairfalsesndy

pairfalsefstyifynsndnfxpre 

 npremmnsub .

Lists Can encode lists as pairs, with one
cons cell being two nested pairs

Recursion Can’t do this directly because such
terms would have infinite symbols

 Use fixed point combinator Y such
that Y F = F (Y F)

))(.))((..(xxfxxxfxfY 

ISWIM Sugaring: let, letrec, where, if,
pattern matching, n-tuples

 Constants: integers, arithmetic,
Booleans, relations (e.g. >, not)

 δ-reductions reduce constants
 Mutable state, so call by value:

desugaring for if delays evaluation
 Values: constants and functions

(expressions in WHNF: call-by-value)
Closures Package λ-abstraction with its current

environment and bound variable
(variable to bind into environment
when the closure is called)

SECD Stack, environment, control (list of
commands: λ-terms or “app”), dump
(empty or machine state, SECD form)

 Initial state has (S, E, C, D) = (-, -,
M, -) for program M

 Do state transition on top of control
SECD Transitions

(S, E, λx.M;C, D)  (Clo(x, M, E); S), E, C, D)

(S, E, MN;C, D)  (S, E, N;M;app;C)

(f;a;S, E, app;C, D)  (f(a);S,E,C,D)

(Clo(x,M,E’);a;S, E, app;C, D)  (-, x=a;E’, M,

(S,E,C,D))

(a, E’, -, (S,E,C,D))  (a;S, E, C, D)
Compiled
SECD

Pre-compile the λ-term for speed e.g.

      appMNMN ;;

 Could add many commands, e.g. if,
tailapp ((Clo(x,C,E’);a, E, tailapp, D)

 (-, x=a;E’, C, D))
SECD The usual Y fails due to call-by-value.

Recursion Can use modified Y combinator
)).(.))(.(..(xxyyfxxxyyfxf  but it

is slow: make closures with environ.
pointing back to closure (does not
work for non-funs)

Laziness When a function is called, the
argument is stored unevaluated in a
thunk, evaluated when a strict built
in function is called

 Update the environment with the
value of the argument after the first
evaluation (call-by-need)

Combinators PKPQ 

)(QRPRSPQR 

 Weak reduction since partially
applied combinators do not reduce

 SKKI  or define directly

).*)(.*(.*

.*

.*

QxPxSPQx

KPPx

Ixx













 CL)( recursively applies * to a

λ-term (innermost terms first) to
convert the entire term

 )( is trivial (and only causes

linear code size increase)
 Free variables but not equality is

preserved (due to weak reduction)
 Adding extensionality (a new rule

for proving equality in the
combinatory logic) means that
equality IS preserved!

Turners
Translation QPRCPQR

QRPBPQR

)(

)(









 As before, but with:

PPxxT . (x nf in P)

).(. QxBPPQx TT   (x nf in P)

QPxCPQx TT).(.   (x nf in Q)

).)(.(. QxPxSPQx TTT   (else)

 Only quadratic blowup in size

Graph
Reduction

Represent λ as graph with sharing,
destructively transform

 Transform leftmost branch, if
function is a strict constant then
recursively transform its args

Continuations Functions that never return but

exists by calling another function is
in continuation passing style:

  
 
   
     ))).((.(.

).(..

.

.

kmnnNmMkMN

MxkkMx

kckc

kxkx

















 The CPS transform produces an
expression with only one reduction
possible (CPS encodes control)

 Reverse transform by applying I
 Slightly less cheat-y transform:
  

 
   
     ))),(.(.(.

)')(,'((..

.

.

nkmnNmMkMN

kMxkkkMx

kckc

kxkx

















 Analogous to ret. addr., arg. pair
Side Effects Model using a world threaded

through the program
 Use each world exactly once
 Make things simpler w/ MONADS!

return, >>=
Type
Inference

Use unification: give all variables
unknown type variables, constants
their declared type then propagate

 Need let polymorphism to allow
multiple unifications, but has
interesting corner cases (y in λx.let
y = (x, λz.z) in e’)

