
Syntax 
Types val npower = fn : real * int -> real 
Strings explode(), implode() convert to lists 
 #”c” is a character constant 
 ^ appends 
Ints div does integer division 
Types datatype vehicle = Boat | Plane; 
 datatype vehicle = Bike of int | Car; 
Case case E of Bike x => F | Plane => G; 
Errors exception Failure; 
 raise Failure; 
 E handle Failure => F | Match => G; 
Lambda (fn x => E) 
 val prefix = (fn a => (fn b => a^b)) 
 fun prefix a b = a ^ b; 
 opX (e.g. op<=) is operator as fun 
Refs Have type ‘a ref, created as ref E 
 !P returns contents, P := E updates 
 Allows iteration: while B do C 
Arrays Has a type of ‘a Array.array 
 Array.tabulate(n, f), Array.sub(A, i), 

Array.update(A, i, e) 
 
Algorithms 
Sorting Bubble 
 Insertion 
 Quick 
 Merge 
Queue Implemented with two arrays and 

reverse: amortized constant cost 
Trees Binary search 
 Breadth-first: using a queue or 

iterative deepening (number of 
nodes at level n + 1 is greater 
than the number of nodes on all 
previous levels combined) 

 Priority queue: using a heuristic 
function during searching 

Functional 
Arrays 

Express index as binary number: 
leading 1 is discarded as it is 
present in each index, the 
remaining bits code from LSB to 
MSB for binary tree path taken 

Lists map applies a lambda expression 
 foldl, foldr apply expression 

recursively (e.g. foldl op+ (0, xs)) 
left or right along a list 

 exists, filter do the obvious 
Lazy Lists datatype ‘a seq = Nil | Cons of ‘a 

* (unit -> ‘a seq); 
 Make sure forces (xf) are 

enclosed in delays (fn () => E) 
Mutable 
Lists 

datatype ‘a mlist = Nil | Cons of ‘a 
* ‘a mlist ref; 

 


