Syntax
	Types
	val npower = fn : real * int -> real

	Strings
	explode(), implode() convert to lists

	
	#”c” is a character constant

	
	^ appends

	Ints
	div does integer division

	Types
	datatype vehicle = Boat | Plane;

	
	datatype vehicle = Bike of int | Car;

	Case
	case E of Bike x => F | Plane => G;

	Errors
	exception Failure;

	
	raise Failure;

	
	E handle Failure => F | Match => G;

	Lambda
	(fn x => E)

	
	val prefix = (fn a => (fn b => a^b))

	
	fun prefix a b = a ^ b;

	
	opX (e.g. op<=) is operator as fun

	Refs
	Have type ‘a ref, created as ref E

	
	!P returns contents, P := E updates

	
	Allows iteration: while B do C

	Arrays
	Has a type of ‘a Array.array

	
	Array.tabulate(n, f), Array.sub(A, i), Array.update(A, i, e)


Algorithms
	Sorting
	Bubble

	
	Insertion

	
	Quick

	
	Merge

	Queue
	Implemented with two arrays and reverse: amortized constant cost

	Trees
	Binary search

	
	Breadth-first: using a queue or iterative deepening (number of nodes at level n + 1 is greater than the number of nodes on all previous levels combined)

	
	Priority queue: using a heuristic function during searching

	Functional Arrays
	Express index as binary number: leading 1 is discarded as it is present in each index, the remaining bits code from LSB to MSB for binary tree path taken

	Lists
	map applies a lambda expression

	
	foldl, foldr apply expression recursively (e.g. foldl op+ (0, xs)) left or right along a list

	
	exists, filter do the obvious

	Lazy Lists
	datatype ‘a seq = Nil | Cons of ‘a * (unit -> ‘a seq);

	
	Make sure forces (xf) are enclosed in delays (fn () => E)

	Mutable Lists
	datatype ‘a mlist = Nil | Cons of ‘a * ‘a mlist ref;


