FP Arithmetic	$x = a * e^b$		Use range reduction if
Representation Exponent Hack	$x_0 \pm x_1 = (a_0 \pm (a_1 * e^{b_1 - b_0})) * e^{b_0}$ (may require several shifts to normalise) Single: p = 24, b = 127 Double: p = 53, b = 1023 Hidden bit for leading 1 Exponent in "excess" format: so fp cmp = int cmp for +VE 00: m = 0 ? zero : denorm 11: m = 0 ? infinity : NaN	In Practice	possible (e.g. with sin), this can allow you to fix iterations and unroll the summing loop IEEE is unbiased so for many programs errors act more like random errors than accum. ones: <i>often</i> find k-ops program has error of <i>macheps</i> . \sqrt{k} not <i>macheps</i> . $\frac{k}{2}$
Basic Ops IEEE Rounding	Do perfect mathematical operations on assumed- precise inputs and round this to the nearest representable IEEE number. In the case of a tie choose the number with an even LSB Unbiased/towards 0/ towards $+\infty$ /towards $-\infty$	Interval Arithmetic	Use two real values, one guaranteed higher than real and another lower than real Can naturally cope with input value uncertainty Hack this up with IEEE round. Computed bounds may not reflect accuracy (e.g. with
Error	$\varepsilon = a-b , \eta = \frac{ a-b }{ a }$ +, -: add absolute *, /: add relative Rounding err. (finite rep.) Truncation err. (finite comp.)	Arbitrary Precision	convergent algorithms) A range can span positive and negative infinity due to division w/ range spanning 0 For any fixed precision has the same problems as IEEE,
Gradual Loss Of Significance Machine Eps	Many sf of precision but with reducing sf of accuracy Difference between 1.0 and the smallest greater representable number (allows for denorms at 0.0)	Exact Real	but for adaptive precision can do better: if result cancels repeat computation with more accuracy. Calculating 0 is a problem (undecidable!) Better techniques than digit
Ill-Conditioned	Outputs are excessively dependent on small variations in the inputs	Aritmetic	streams (linear maps, fraction expansions)
Quadratic Example	Watch for $-b+b$ in $x = \frac{-b+\sqrt{b^2-4ac}}{2a}$, rearrange for small root only: $x = \frac{-2c}{b+\sqrt{b^2-4ac}}$		
Differentiation Example	Use $f'(x) = \frac{f(x+h)-f(x)}{h}$, but get truncation for large h and rounding for small h: choose h where errors equal Taylor expansion of formula: $f(x+h) \approx f(x) + hf'(x) + \frac{h^2 f''(x)}{2}$ Trunc. error: $\frac{hf''(x)}{2}$ (determine this by substitution into f'(x)) Round. error: $\frac{macheps}{h}$ (subs. Taylor into f'(x) and call terms above h "± macheps")		
Taylor Series Example	Watch for truncation and cancelling intermediate terms		