Propositional Logic

Grammar Model $\begin{array}{l}a,b,c..|T|F|A \wedge B|A \vee B| \neg A\\
\|A\|_{_{M}} \subseteq U_{_{M}}, \|T\|_{_{M}} = U_{_{M}}, \|F\|_{_{M}} = 0\\
\text{Validity}\\
A \text{ valid in } M \Leftrightarrow \|A\|_{_{M}} = U_{_{M}} \Leftrightarrow \leq A\\
A \text{ entails } B \Leftrightarrow \|A\|_{_{M}} \subseteq \|B\|_{_{M}} \Leftrightarrow A \leq B\\
A \leq B \square \leq (A \square B)\\
\leq A \square \leq_{\mathsf{TA}} A, \leq A \square A \text{ is a tautology}\\
\end{array}$

Functions

Function	$\forall x, y, y'. (x, y) \in f(x) \land (x, y') \in f(x) \Longrightarrow y = y'$
	Total $\Box \forall x \in X . f(x)$ is defined
Injective	$\forall x, x' \in X. f(x) = f(x') \Longrightarrow x = x'$
Surjective	$\forall y \in Y. \exists x \in X. y = f(x)$
Bijective	Bijective 🗆 has an inverse
Images	$RA = \{ y \in Y \mid \exists x \in A. (x, y) \in R \}$
	$R^{-1}A = \{x \in X \mid \exists y \in A.(x, y) \in R\}$

Relations

Relations	
Equivalence	$\forall x \in X.xRx, \forall x, y \in X.xRy \Longrightarrow yRx$
	$\forall x, y, z \in X. xRy \land yRz \Longrightarrow xRz$
	$Class = \{x\}_R = \{y \in X \mid yRx\}$
Partial Order	$\forall p \in P. p \le p$
	$\forall p,q \in P. p \leq q \land q \leq p \Longrightarrow q = p$
	$\forall p, q, r \in P. p \le q \land q \le r \Longrightarrow p \le r$
	Total 🗆 all pairs comparable
	A preorder lacks anti-symmetry
Lub	$X \subseteq P$: u such that $\forall x \in X.x \leq u$
	$\forall p \in P. (\forall x \in X. x \le p) \Longrightarrow u \le p)$
Glb	$X \subseteq P$: I such that $\forall x \in X.x \ge l$
	$\forall p \in P. (\forall x \in X. x \ge p) \Longrightarrow l \ge p)$
	If a partial order has all lub, glb
	it is called a complete lattice
Set Size	

Definition	$ A = B \Leftrightarrow A \cong B \Leftrightarrow A, B$ in bij. cor.
	$Finite \Leftrightarrow \exists f.f: \{m \in \aleph \mid m \le n\} \to A$
Countable	A finite
	A infinite $\land \exists f.f: \aleph \rightarrow A$
	$\exists f, B \subseteq \aleph.f_{bij} : B \to A$
	$\exists f.f_{inj}: A \to \aleph$
	$\exists f, B \text{ countable.} f_{inj} : A \rightarrow B$
	××∺is countable
	Union of countable sets countable
	R is uncountable

Set Construction

Paradox $S = \{x \mid x \notin x\}$. Is $S \in S$?Comprehension $\{x \in X \mid P(x)\}$ Powerset $P(X) = \{Y \mid Y \subseteq X\}$

Indexed Set	$\{x_i \mid i \in I\}$
Disjoint Union	$(\{1\} \times A\} \cup (\{2\} \times B)$
Miscellaneous	Union, intersection, product,
	set difference
Foundation	\in is well founded
Characteristic	$X_Y: X \to \{T, F\} = (T \Leftrightarrow x \in Y)$
Size	Sets are never in bijective
	correspondence with their
	powerset: this means there is
	no largest set

Inductive Definition

Rules	Premise (X), axiom (y): X/y
	$R-closure \Leftrightarrow \forall (X / y) . X \subseteq Q \Longrightarrow y \in Q$
	Bounded eq exists R-closed set
	$I_R = \bigcap \{Q \mid Q \text{ is } R \text{ - closed} \}$
Induction	$\forall (X / y) \in R.(\forall x \in X.x \in I_R \land P(x)) \Longrightarrow P(y)$
Transitive	$R^{+} = \{(a,b) \mid (a,b) \in R \lor ((a,c) \in R^{+} \land (c,b) \in R^{+})\}$
Closure	$R^* = R^+ \cup id_R$
Derivation	$y \in I_R \Leftrightarrow \exists \mathbf{R} \text{ - derivation of } \mathbf{y}$
	Induction can occur on derivations

Well Founded Induction

Definition	Relation such that there are no infinite descending chains of
	$a \le b \Leftrightarrow a \prec b \lor a = b$
Relation	\Box on A well founded \Box
To Sets	$\forall Q \subseteq A. (m \in Q \land \forall b \prec m.b \notin Q)$
Induction	$\forall a \in A.((\forall b \prec a.P(b)) \Longrightarrow P(a))$
Building	Transitive closure retains w.f.
	Product of two w.f.
	Lexicographic product of two w.f
	$f: A \to B, \prec_B \Longrightarrow (a \prec_A a' \Leftrightarrow f(a) \prec_B f(a'))$
	yields w.f. \Box_A where \Box_B is w.f.
Recursion	Given B, \Box on B well founded and
	a F mapping B and an arbitrary #
	of C to C for all inputs, we have:
	$f(b) = F(b, f(b_1), \dots, f(b_n), \dots), b_1 \prec \dots \prec b_n \prec \dots$
	Where f is a unique total function