
Sequences

{xn}∞n=−∞ is a discrete sequence.

Can derive a sequence from a function x(t) by having xn =
x(tsn) = x( nfs ).

Absolute summability:
∑∞
n=−∞ |xn| <∞

Square summability:
∑∞
n=−∞ |xn|2 <∞ (aka energy signal)

Periodic: ∃k > 0 : ∀n ∈ Z : xn = xn+k

un =

{
0 n < 0

1 n ≥ 0
is the unit-step sequence

δn =

{
1 n = 0

0 n 6= 0
is the impulse sequence

Systems

A discrete system T transforms a sequence: {yn} = T{xn}.

Causal systems cannot look into the future: yn =
f(xn, xn−1, xn−2, . . .)

Memoryless systems depend only on the current input: yn =
f(xn)

Delay systems shift sequences in time: yn = xn−d

A system T is time invariant if for all d: {yn} = T{xn} ⇐⇒
{yn−d} = T{xn−d}

A system T is linear if for any sequences: T{axn + bx′n} =
aT{xn}+ bT{x′n}

Causal linear time-invariant systems are of the form∑N
k=0 akyn−k =

∑M
m=0 bmxn−m, but all of them can be rep-

resented with only one set of coefficients, i.e. bi = δi. In this
case the sequence {an} is called the impulse response of T since
{an} = T{δn}.

Convolution

{pn} ∗ {qn} = {rn} ⇐⇒ ∀n ∈ Z : rn =
∑∞
k=−∞ pkqn−k

Associativity: ({pn} ∗ {qn}) ∗ {rn} = {pn} ∗ ({qn} ∗ {rn})

Commutativity: {pn} ∗ {qn} = {qn} ∗ {pn}

Linearity: {pn} ∗ {aqn + brn} = a({pn} ∗ {qn}) + b({pn} ∗ {rn})

Identity: {pn} ∗ {δn} = {pn}

Shifting: {pn−d} = {pn} ∗ {δn−d}

Sine-wave and exponential sequences form a family of discrete
sequences that is closed under convolution with arbitrary se-
quences.

Dirac’s Delta Function

δ(x) =

{
0 x 6= 0

∞ x = 0
,
∫∞
−∞ δ(x)dx = 1

Sampling:
∫∞
−∞ f(x)δ(x− a)dx = f(a)

Dirac comb: s(t) = ts
∑∞
n=−∞ δ(t− tsn), x̂(t) = x(t)s(t)

Fourier Transform

Discrete Sejong’s of the form xn = ejωn are eigensequences with
respect to a system T because for any ω, there is some H(ω)
such that T{xn} = H(ω){xn}

F{g(t)}(ω) = G(ω) =
∫∞
−∞ g(t)e∓jωtdt

F−1{G(ω)}(t) = g(t) =
∫∞
−∞G(ω)e±jωtdt

Linearity: ax(t) + by(t) 
 aX(f) + bY (f)

Time scaling: x(at) 
 1
|a|X( fa )

Frequency scaling: 1
|a|x( ta ) 
 X(af)

Time shifting: x(t−∆t) 
 X(f)e−2πjf∆t

Frequency shifting: x(t)e2πj∆ft 
 X(f −∆f)

Parseval’s theorem:
∫∞
∞ |x(t)|2dt =

∫∞
−∞ |X(f)|2df

Continuous convolution: F{(f ∗ g)(t)} = F{f(t)}F{g(t)}

Discrete convolution: {xn} ∗ {yn} = {zn} ⇐⇒
X(ejω)Y (ejω) = Z(ejω)

Sample Transforms

The Fourier transform preserves function even/oddness but flips
real/imaginaryness iff x(t) is odd.

F{cos(2πf0t)}(f) = 1
2δ(f − f0) + 1

2δ(f + f0)

F{sin(2πf0t)}(f) = − j2δ(f − f0) + j
2δ(f + f0)

F{ts
∑∞
n=−∞ δ(t− tsn)}(f) =

∑∞
n=−∞ δ(f − n

ts
)

Aliasing

Due to overlapping in the frequency domain, the Nyquist limit
stipulates that frequencies in the signal should be limited so
that |f | ≤ fs

2 . Bandpass sampled signals can also be re-
constructed if their spectral component lie within the interval
n fs2 < |f | < (n+ 1) fs2

An ideal filter for enforcing the Nyquist criterion is rect(tsf) ={
1 |f | < fs

2

0 |f | > fs
2

withF−1{rect(f)}(t) = fs
sinπtfs
πtfs

.

Typically the sampling frequency is chosen so there is a transi-
tion band between the Nyquist limit and the highest frequency
expected to be sampled.
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Discrete Fourier Transform

Xk =
∑n−1
i=0 xie

−2πj ik
n

xk = 1
n

∑n−1
i=0 Xie

2πj ik
n

The elements X0to Xn
2
contain the frequency components 0, fsn ,

2fs
n , . . ., fs2
We can make use of the fast Fourier transform:
Fn{xi}n−1

i=0 =
∑n−1
i=0 xie

−2πj ik
n , so =

∑n
2−1
i=0 x2ie

−2πj 2ik
n +

e−2πj k
n

∑n
2−1
i=0 x2i+1e

−2πj 2ik
n . This repeated subdivision has

log2 n rounds and n log2 n additions and multiplications overall,
compared to n2 for the equivalent matrix multiplication.

By the symmetry properties of the FFT, ∀i : xi = R(xi) ⇐⇒
∀i : Xn−i = X?

i and ∀i : xi = jI(xi) ⇐⇒ ∀i : Xn−i = −X?
i .

We can therefore compute the FFT of two real valued sequences
by computing that of x′i + jx′′i and saying X ′i = 1

2 (Xi +X?
n−1)

and X ′i = 1
2 (Xi −X?

n−1).

We can also compute complex multiplication with 3 multipli-
cations and 5 additions rather than 4 multiplications and 2
additions that are required naively if we have the numbers in
Cartesian format.

Application to Convolution

We can compute convolution using FFT with O(m logm +
n log n) rather than mn multiplications if we multiply in the
Fourier domain instead. Note however that the sequences be-
ing convolved must be periodic with equal period lengths. If
this condition is not fulfilled the sequences must be zero-padded
to a length of at least m+ n− 1 to ensure the start and end of
the resulting sequence do not overlap.

We can use this result to perform deconvolution by dividing the
Fourier representation: u = F−1{F{s}F{h}}

Spectral Estimation

If the input to the DFT is sampled but not periodic, the DFT
may still be used to calculate an approximation. However, we
see leakage of energy to frequency bins that are not strictly
present in the input signal but adjacent to expressed frequen-
cies. The peak amplitude also changes as the frequency of a
tone changes from one bin to the next, reaching its lowest am-
plitude of 62% halfway between the two. This is known as
scalloping. It occurs since the effective window introduced by
the DFT is rectangular, which corresponds to convolution with
sinc in the frequency domain.

A non-periodic signal can have a windowing function applied
to try and reduce scalloping and leakage. Possibilities include:

Triangular: wi = 1−
∣∣1− 2i

n

∣∣
Hanning: wi = 0.5− 0.5 cos(2π i

n−1 )

Hamming: wi = 0.54− 0.46 cos(2π i
n−1 )

Since a windowed signal has been forced to 0 outside the sam-
pled region, it may be zero-padded at either end without further
distortion. However, that does increase the frequency resolution
of the DFT (albeit without adding any new information!).

Filter Design

We can turn a spectrum X(f) into an inverted spectrum
X ′(f) = X( fs2 − f) we shift the spectrum by fs

2 . This can
be done by multiplying with the sequence with yi = cos(πi).
This can turn a low-pass filter into a high-pass filter.

The ideal low-pass filter has two problems in that it is not causal
and has an infinitely long impulse response. This is solved by
applying a windowing function and a delay to make it causal,
such as:

hi = 2 fcfs
sin(2π(i−n

2 ) fc
fs

)

2π(i−n
2 ) fc

fs

wi for an nth order low pass filter.

Z-Transform

If X(z) =
∑∞
n=−∞ xnz

−n, which defines a complex-valued sur-
face over C. For finite sequences, this surface is defined every-
where, else it converges in the region limn→∞

∣∣∣xn+1

xn

∣∣∣ < |z| <
limn→−∞

∣∣∣xn+1

xn

∣∣∣.
For an LTI system defined by

∑k
l=0 alyn−l =

∑m
l=0 blxn−l,

H(z) = b0+b1z
−1+b2z

−2+...+bmz
−m

a0+a1z−1+a2z−2+...+akz−k so that {yn} = {hn} ∗ {xn}.
This has m zeroes and k poles at non-zero locations in the z
plane, plus k −m zeroes (if k > m) or m − k poles (if m > k)
at z = 0.

The order of a filter is the number of zeroes it has. Possible
filter types are Butterworth, Chebyshev Type I/Type II and
Elliptic.

Random Sequences

In such a sequence every value is the outcome of a one random
variable from a corresponding sequence. This collection of ran-
dom variables is called a random process. Such a process is sta-
tionary if Pxn1+l,...,xnk+l

(a1, . . . , ak) = Pxn1,...,xnk
(a1, . . . , ak)

where Pxn(a) = Prob(xn ≤ a).

Expected value: mx = ε(xn) =
∫
apxn(a)da

Variance: V ar(xn) = ε(|xn − ε(xn)|2) = ε(|xn|2)− |ε(xn)|2

Correlation: Cor(xn, xm) = ε(xnx
?
m) = φxx(0)

Cross-correlation: φxy(k) = ε(xn+ky
?
n), Autocorrelation:

φxx(k)

Cross-covariance: γxy(k) = ε[(xn+k − mx)(yn − my)?] =
φxy(k)−mxm

?
y, Autocovariance: γxx(k)
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Deterministic cross-correlation: cxy(k) =
∑∞
i=−∞ xi+kyi, so

that {cxy(k)} = {xk} ∗ {y−k}. This implies that the Fourier
transform Cxx(f) is identical to the power spectrum.

If {yn} = {hn} ∗ {xn} then my = mx

∑∞
k=−∞ hk, {φyy(n)} =

{chh(n)} ∗ {φxx(n)} and {φyx(n)} = {hn} ∗ {φxx(n)}

White noise is characterized by mx = 0 and φxx(k) = σ2
xδk

A DFT can be averaged by cutting a signal into a number of
windows, taking the DFTs of these and plotting the average of
their absolute values: this is known as incoherent averaging.
Coherent averaging is done by taking the absolute value af-
ter averaging the complex numbers, which suppresses anything
which is not a periodic waveform with a period that divides the
number of elements per window.

Compression

A compression system will typically involve several changes:

1. Transducer: converts input into voltage

2. A-to-D converter: samples and quantizes the signal

3. Transformation into a perceptual domain

4. Quantization based on perceptual model

5. Decorrelation transform to reduce entropy

6. Entropy coding for transmission

Coding

Coding techniques which can be used include Huffman (iterated
low-probability tree building), arithmetic (successive weighted
numeric interval refinement) and run-length. There is also
a class of predictor codings, where only the difference be-
tween the prediction and the reality is transmitted. Simple
cases are delta coding (P (x) = x) and linear predictive coding
(P (x1, . . . , xn) =

∑n
i=1 aixi).

Decorrelation

If P (X = x ∧ Y = y) 6= P (X = x)P (Y = y) for any x and
y then H(X|Y ) < H(X) ∧ H(Y |X) < H(Y ). This cannot
be exploited practically since there are too many conditional
probabilities. However, we can approximate it with correlation,
which captures most dependence relationships.

The Pearson correlation coefficient: ρX,Y = Cov(X,Y )√
V ar(X)V ar(Y )

The covariance matrix: Cov( ~X) = (Cov(Xi, Xj))i,j for ~X ∈
Rn. Note that Cov( ~X) = CovT ( ~X)

If ~X ∈ Rn and ~Y ∈ Rn so that ~Y = A ~X+b with A ∈ Rn×n and
b ∈ Rn then E(~Y ) = AE( ~X) + b and Cov(~Y ) = ACov( ~X)AT

Recall that ~x is an eigenvector if for some λ ∈ R A~x = λx. Now
any symmetric matrix A can be represented as UΛUT where
Λ = diag(λ1, . . . , λn) of increasing λ and the columns of U are
the corresponding orthonormal eigenvectors.

The Karhunen-Loeve transform finds a matrix A so that
Cov(AX) = ACov(X)AT is diagonalized. It can be shown
that since that UUT = I the UT from above is just such an
A. This can be applied straightforwardly to decorrelate color
planes, but for spatial decorrelation we work on a matrix where
the columns are entire monochrome images!

It turns out that in practice (for most sample images used to
calculate decorrelation) the eigenvector matrix is almost indis-
tinguishable from that of the Discrete Cosine Transform:

S(u) = C(u)√
N/2

∑N−1
x=0 s(x) cos (2x+1)uπ

2N

s(u) =
∑N−1
x=0

C(u)√
N/2

S(u) cos (2x+1)uπ
2N

Where C(u) =

{
1√
2

u = 0

1 u > 0
, ensuring orthogonality.

The Discrete Wavelet Transform ensures that the bandwidth
of each output signal is proportional to the highest input fre-
quency that it contains. It is defined by the combination of a
low pass and high pass filter. For an n-point DFT the vector
is convolved separately with a low pass and a high pass filter.
The results each have n numbers, but as the resolution of each
has been halved, half those numbers can be discarded. The
output values of the high pass filter are retained and the low
pass information is recursively treated the same way until only
a single value remains (the average).

Psychophysics

Weber’s law gives the difference limit (smallest stimulus per-
ceivable at an intensity level): ∆φ = c(φ+ a)

Fechner’s scale gives defines a perception intensity scale with
the sensation limit of φ0 as the origin and the respective differ-
ent limit ∆φ as a unit step: ψ = logc

φ
φ0

Stevens’ law is like Fechner’s scale, but rational so that it re-
flects subjective relations: ψ = k(φ− φ0)a

The human eye processes color and luminosity at different res-
olutions. To exploit this, some TV signals are transmitted
as luminance and chrominance channels (YUV) rather than
RGB. Typically Y = 0.3R + 0.6G + 0.1B, V = R − Y and
U = B−Y . There also exist normalized channels Cb = U

2.0 +0.5

and Cr = V
1.6 + 0.5

A pair of pure tones cannot be distinguished as two frequencies
if both are in the same critical band. The human ear has 24
critical bands, which are expressed on the Bark scale. This
can be mapped to from frequency by the approximation b ≈

26.81
1+ 1960Hz

f

− 0.53
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Louder tones increase the sensation limit for nearby critical
bands asymmetrically. This extends both backwards and for-
wards from the time the masking signal is introduced, peaking
at its edges.

Due to these sensation limit effects, non-uniform quantization
can reduce perceived quantization noise. Typically this will be
done with a logarithmic scale, of which µ-law and A-law are the
competing flavors.

JPEG

The JPEG algorithm proceeds as follows:

1. 8 bit RGB input image transformed into 8 bit YCrCb

2. Chrominance channel resolution reduced by a factor of 2

3. For each channel:

(a) Split channel into 8× 8 blocks

(b) Perform forward DCT on each block

(c) Quantize DCT coefficients by perceptual matrix

(d) Apply delta coding to coefficients

(e) Read remaining values from DCT in a zigzag

(f) Apply run-length coding to zeroes

(g) Apply Huffman coding

MPEG

This is a video coding scheme very similar to JPEG. However,
it adds:

• Spatially scalable coding (for progressive rendering of a
kind)

• Predictive coding with motion compensation

• Interframe coding with I (independent), P (differences rela-
tive to previous frame) and B (interpolation between neigh-
boring) frames
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