Least Fixed Points

A relation C is a partial order iff it is reflexive, transitive and
anti-symmetric. Paired with a set D it forms a poset (D, C).

The least element of a poset, L, satisfies Vx € D. LC x if it
exists.

The least upper bound of a chain dy T dy C ... is written
Ll,,>0 dn if it exists, which satisfies Vn € N.d,, C | |~ d, and
vd € D.(Vm > 0.dy, Ed) = | |,50dn C d. a

A chain complete poset or cpo is a poset (D,C) in which all
countable increasing chains have lubs. A domain is a cpo that
further possesses a least element.

Domain Of Partial Functions
D = {f|f is apartial function, dom(f) C X,im(f) C Y}
fEg < dom(f) < dom(g) A (Va € dom(f).f(z) = g(x))

undefined otherwise

if z € dom(fy),
if x € dom(fy), some n and

)

The lub is f(x) = {
L (z) = undefined

Poset Mappings

f:D — E is monotone ifVd,d' € D.dC d = f(d) C f(d).

f D — Eis continuous if it is monotone and f(Ll,qdn) =
Lo f(dn).

f:D — Eis strict if f(1)= L.

To check that monotone f is continuous it is sufficient to show

that for every chain d,in D, f(|,>cdn) E |l,>¢ f(dn) holds
in E. B B

Fixed Points

If Dis aposet and f : D — D, d € D is a pre-fized point
of fif f(d) C d. The least such point is fiz(f) and satisfies
f(fix(f)) T fiz(f) and Vd € D.f(d) € d = fia(f) C d.

Tarski Fixed Point Theorem: for continuous f, fiz(f) =
Ll,,>o f"(L) and furthermore f(fiz(f)) = fiz(f) and hence
is the least fixed point of f as well.

To see this is true, first observe that f™(Ll)
forms a chain since fO(L) = L C  fi(L)
and by  monotonicity (fm(L) C frri(L)) =

(frHH(L) = FUM() E FUH(L) = fH2(L)),  with  the

rest following by induction. Now:

Ffiz() = £ ] (L)

n>0

= o)

n>0

_ |_| fn+1(J_)

n>0

= 4w

n>0

= fiz(f)

Where the penultimate step depends on the fact that discarding
finite elements at the start of a chain doesn’t change its lub. It
is easy to show that Vn € N.f"(L) C d for any d € D such that
f(d) E d by induction on n.

Domain Constructions

Product

D =Dy x Dy
(d1,d2) C (dy,dy) <= di Cidy Ady C dy
Unzo(dl,n, d2,n) = (l—liZO dl,ia I—ljZO d2,j)

Continuous Functions Of Two Arguments

f i DxFE — F for cpos D, E and F is monotone iff it is
monotone in each argument separately and continuous iff it
preserves lubs of chains in each argument separately.

Diagonalization

If the family of elements d,,, € D satisfies m < m/ An <
n' = dpyn C dpy gy then |_|n20 don T |_|n20 di, C ... and
|_|m20 UnZO A, = |_|k20 di, ks = |_|n20 I_lmZO dm,n

Functions

For cpos (D,Cp) and (E,Cg), the function cpo (D — E,C)
has:

D — E={f|f: D — E, f is a continuous function}

fCf < Vde D.f(d) Cg f'(d)

(Unso fa)(d) = U,so fn(d)

If E is a domain then Lp ,g(d) = Llg

The functions ev(f,d) = f(d) and cur(f)(d') = Xd € D.f(d',d)
are continuous.



Fixed Point

For a domain D, the function fix : (D — D) — D is continu-
ous.

Flat Domains

For any set X, z C 2/ <= z = 2’ makes (X,C) into a
cpo, called the discrete cpo with underlying set X. For X, =
XU{l}withzCa' < z=2'Ve=_1, (X,,0)is a domain
called the flat domain.

Scott Induction

A subset S C D is called chain-closed iff for all chains d,in D
(Vn > 0.d, € S) = (L,>0dn) € 5.

If D is a domain, Sis called admissible iff it is a chain-closed
subset of D and L € S.

A property ®(d) is called chain-closed/admissible if its corre-
sponding set, {d € D|®(d)} is.

Scott’s Fixed Point Induction Principle: for continuous f : D —
D on domain D, to show that fiz(f) € S for admissible S C D
it suffices to prove that Vd € D(d € S = f(d) € S).

Basic relations: for cpo D, {(z,y) € DxD|z C y} and {(z,y) €
D x D|x = y} are chain closed subsets.

Inverse image: for continuous f : D — E between cpos D and
E, for a chain-closed subset S of E, f~1S = {z € D|f(z) € S}
is a chain-closed subset.

Logical operations: for cpo D with chain-closed subsets S and
T, then SUT and SNT are chain-closed subsets since any chain
will have to visit one of the sets infinitely often, so we can use
the lub from that set.

Infinite intersections: for cpo D with a family of chain-closed
subsets S;indexed by a set I, [);c; S; is a chain-closed subset of
D. This doesn’t work for unions (consider unioning together an
infinite number of singleton sets to build arbitrary chain-closed
sets..).

PCF

7 = nat|bool|T — T

The evaluation relation takes the form M |}, V where V is a
value (V' ::= 0|succ(V)|true| false|fnx : 7.M). The evaluation
rules are also standard, and have the determinism property.
The only interesting one is that:

M fiz(M) .V

fix(M) 4,V

Aims Of Semantics

Types 7 map to domains [7], terms M : 7 map to elements
[M] €[] and [M] = [M"] = [C[M]] = [C[M"]].

Soundness: for any type 7, M | 7V = [M] = [V].

Adequacy: for 7 = bool or nat, [M]=[V]e[r]=M |,V .

Contextual equivalence: if any occurrences of the first phrase
in a complete program can be replaced by the second phrase
without affecting the observable results of executing the pro-
gram. [' - My &, M> : 7 holds iff the typings hold and for all
contexts C where C[M;] and C[My] are closed terms of type 7,
CIMi] I,V = C[M] |, V.

For all types 7and closed terms Mj;, My of that type, if
[Mi] = [M2] € [7] then M; 2., Ms : 7 by soundness, compo-
sitionality and adequacy.

Types

[nat] = N, [bool] = B, (flat domain)

[t = 7] =[r] = [7'] (function domain)

Terms
For well typed M, define a function [I' = M] : [I] —
[7] where [I] = TLcsommL@] = {p : dom(l) —

Usedomm[F(@)]|Ve € dom(T').p(z) € [I'(z)]}whose elements
are mapping variables to an element in the domain of the cor-
responding type.

Semantic rules are defined by structural induction and are both
continuous and strict:

[T'F0](p) = 0 € [nat]
[T F true](p) = true € [bool]
[Tk false](p) = false € [bool]

M ::= Olsuce(M)|pred(M)|zero(M)|true| false|if M then M else W@Mﬂg): p(x) € [[(z)] where z € dom(T)

T.M|M M| fiz(M) with z € V and expressions identified up to
a-conversion.

Typing relations are of the form I' = M : 7 where I' is a fi-
nite partial function mapping variables to types and obey the
standard rules, which have the unique-type property and that
frFM:7and Tz — 7] M’ : 7/ then T'+ M'[M/z] : 7.

CHMI(p)+1 i [TF M](p) # L
1 otherwise

HFwMMWm={

[TEM](p)—1 i [T'FM]p) >0
L otherwise

[T pred(M)](p) = {



true if [['F MJ](p) =0
[T F zero(M)](p) = { false if [T'+ M](p) >0
L otherwise
[r = if My then My else Ms](p) =
[['F M](p) if [I'+ Mi](p) = true
[T+ Myl(p) i [T F My () = false
1 otherwise

[T+ My Ms](p) = ([ = Mi] (o)) ([T = M2](p))

[T F fnz: 7.M](p) = M € [7].[T[z — 7] b M](p[z — d])
(where x ¢ dom(T"))

[T F fiz(M)](p) = fix([L = M](p))

For closed terms M € PCF., ) -M:7 so we get the only
I-environment being 1 and since functions {L} — D are
in bijection with D we can identify the denotation of closed
PCF terms with elements of the domain denoting their type:
[M] = [0+ MI(L) € [7].

Continuity Aside

Constant functions are continuous.
Projections in dependent product domains are continuous.

If f:D— F and g: E — F are continuous functions between
cpos, then their composition go f : D — F is also continuous.

Function pairing (f, g) (x) = (f(x), g(x)) is continuous.

Substitution And Soundness

Substitution: if I' = M : 7 and I'lx — 7] F M’ : 7/ then
[T = M [M/2]l(p) = [Tlw — 7] = M) (plz — [T+ M](p)]).

Soundness: for all types Tand closed terms M,V € PCF., if
M |}, V is derivable then [M] and [V] are equal elements of
the domain [7].

Adequacy

The family of binary relations <, C [r] x PCF;, indexed by
types T relates elements of the domain [7] to closed terms of

type 7.

A T-substitution o is a function mapping each variable x €
dom(T") to a closed PCF term o(x) of type I'(x).

Say that p<r 0 <= Vz € dom(I').p(x) <p(y) o(x) (i.e. lifting
the relation from types and terms to type environments and
I-substitutions).

d<pat M <= (d €N = M |,q succ?(0))

d Goor M <= (d = true = M Jpoor true) A (d = false =
M U’bool false)

A< M < Ve,N.(e<; N = d(e) <, M N)

Fundamental Property: If ' = M : 7 is a valid typing, then
p<ro = [['F M](p) < M[o] where M|o] is the term resulting
from the simultaneous substitution of o(x) for z in M for each
x € dom(T"). This specializes to [M] <, M.

From this we can prove that [M] = [V] = M |, V as required.
For example, if 7 = nat, then for some n € N V = succ™(0)
and so:

[M] = [succ™(0)]
= (n=[M])a M
= M | succ"(0)
Extensionality

I' v My <gox Ms : 7 holds iff the typings hold and for all
contexts C for which C[M;] and C[M;] are closed terms of type
v € {nat,bool} and for all values V' : ~, it is true that C[M;] |,
V= C[M] |, V.

It can be shown that for all types 7 and terms My, M> it is true
that My <eto Mo : 7 < [M;] <; Ms and for T € {nat, bool}
it is also true that My <.y Mo : 7 <= VYV :7(M; |, V =
My > V) i.e. their evaluations are syntactically equal, and
for 7 =1 = 1, My <eto My 17 <= VM : (M1 M <ia
My M : 75) i.e. their evaluation at all points obey the equality.

Full Abstraction

There are contextually equivalent PCF terms with unequal de-
notations. A denotational semantics is fully abstract if this is
not the case.

’ por \true \ false\ L ‘

true | true | true | true
false | true | false il
1 true 1 1

There is no closed PCF term P : bool — (bool — bool) satisfying
[P] = por. Now consider:

T, = fnf:bool — (bool — bool).

if (f trueQ)then

if (ftrue))then

if (f false false)then Q else B;
else ()

else )

Where By = true and By = false. Now Ty e, To ¢ (bool —
(bool — bool)) — bool but [T1] # [T=]. Contextual equiva-
lence can be proved by using the extensionality property on T;



and then just considering all M of the argument type. This
requires that M evaluates to true, true and false (in order
that we get a value) on the arguments (true, Q), (Q,true) and
(false, false) respectively. This means that [M] coincides with
por, which is impossible and hence the terms are trivially con-
textually equivalent because they can never return a value in
any PCF context.

Extending PCF with por in the obvious way and our semantics
with the additional clause:

[T = por (M, M2)](p) = por([I' b My (p))(IT" = Ma](p))

Yields a language which is fully abstract with respect to our
semantics i.e. 'k My 2, My :7 < [I'F M;] = [T'F M,]



