Least Fixed Points

A relation \sqsubseteq is a *partial order* iff it is reflexive, transitive and anti-symmetric. Paired with a set D it forms a *poset* (D, \sqsubseteq) .

The least element of a poset, \perp , satisfies $\forall x \in D$. $\perp \sqsubseteq x$ if it exists.

The least upper bound of a chain $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ is written $\bigsqcup_{n\geq 0} d_n$ if it exists, which satisfies $\forall n \in \mathbb{N}. d_n \sqsubseteq \bigsqcup_{n\geq 0} d_n$ and $\forall d \in D. (\forall m \ge 0. d_m \sqsubseteq d) \Rightarrow \bigsqcup_{n\geq 0} d_n \sqsubseteq d$.

A chain complete poset or cpo is a poset (D, \sqsubseteq) in which all countable increasing chains have lubs. A *domain* is a cpo that further possesses a least element.

Domain Of Partial Functions

$$D = \{f | f \text{ is a partial function}, dom(f) \subseteq X, im(f) \subseteq Y\}$$

 $f\sqsubseteq g\iff dom(f)\subseteq dom(g)\wedge (\forall x\in dom(f).f(x)=g(x))$

The lub is $f(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n), \text{ some } n \\ undefined & \text{otherwise} \end{cases}$, and $\perp(x) = undefined$

Poset Mappings

 $f: D \to E$ is monotone if $\forall d, d' \in D.d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d')$.

 $f: D \to E$ is *continuous* if it is monotone and $f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n)$.

 $f: D \to E$ is strict if $f(\bot) = \bot$.

To check that monotone f is continuous it is sufficient to show that for every chain d_n in D, $f(\bigsqcup_{n\geq 0} d_n) \sqsubseteq \bigsqcup_{n\geq 0} f(d_n)$ holds in E.

Fixed Points

If D is a poset and $f : D \to D$, $d \in D$ is a pre-fixed point of f if $f(d) \sqsubseteq d$. The least such point is fix(f) and satisfies $f(fix(f)) \sqsubseteq fix(f)$ and $\forall d \in D.f(d) \sqsubseteq d \Rightarrow fix(f) \sqsubseteq d$.

Tarski Fixed Point Theorem: for continuous f, $fix(f) = \bigsqcup_{n\geq 0} f^n(\bot)$ and furthermore f(fix(f)) = fix(f) and hence is the least fixed point of f as well.

To see this is true, first observe that $f^n(\perp)$ chain since $f^0(\perp)$ forms a = 1 $f^1(\perp)$ $\left(f^n(\bot) \sqsubseteq f^{n+1}(\bot)\right)$ monotonicity and by \Rightarrow $(f^{n+1}(\bot) = f(f^n(\bot)) \sqsubseteq f(f^{n+1}(\bot)) = f^{n+2}(\bot)),$ with the rest following by induction. Now:

$$f(fix(f)) = f(\bigsqcup_{n \ge 0} f^n(\bot))$$
$$= \bigsqcup_{n \ge 0} f(f^n(\bot))$$
$$= \bigsqcup_{n \ge 0} f^{n+1}(\bot)$$
$$= \bigsqcup_{n \ge 0} f^n(\bot)$$
$$= fix(f)$$

Where the penultimate step depends on the fact that discarding finite elements at the start of a chain doesn't change its lub. It is easy to show that $\forall n \in \mathbb{N}$. $f^n(\perp) \sqsubseteq d$ for any $d \in D$ such that $f(d) \sqsubseteq d$ by induction on n.

Domain Constructions

Product

$$D = D_1 \times D_2$$

$$(d_1, d_2) \sqsubseteq (d'_1, d'_2) \iff d_1 \sqsubseteq_1 d'_1 \wedge d_2 \sqsubseteq d'_2$$

$$\bigsqcup_{n \ge 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i \ge 0} d_{1,i}, \bigsqcup_{j \ge 0} d_{2,j})$$

Continuous Functions Of Two Arguments

 $f: D \times E \to F$ for cpos D, E and F is monotone iff it is monotone in each argument separately and continuous iff it preserves lubs of chains in each argument separately.

Diagonalization

If the family of elements $d_{m,n} \in D$ satisfies $m \leq m' \wedge n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}$ then $\bigsqcup_{n\geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{1,n} \sqsubseteq \ldots$ and $\bigsqcup_{m\geq 0} \bigsqcup_{n\geq 0} d_{m,n} = \bigsqcup_{k\geq 0} d_{k,k} = \bigsqcup_{n\geq 0} \bigsqcup_{m\geq 0} d_{m,n}$

Functions

For cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has:

$$D \to E = \{f | f : D \to E, f \text{ is a continuous function}\}$$
$$f \sqsubseteq f' \iff \forall d \in D.f(d) \sqsubseteq_E f'(d)$$
$$(\bigsqcup_{n \ge 0} f_n)(d) = \bigsqcup_{n \ge 0} f_n(d)$$
If E is a domain then $\bot_{D \to E}(d) = \bot_E$

The functions ev(f,d) = f(d) and $cur(f)(d') = \lambda d \in D.f(d',d)$ are continuous.

Fixed Point

For a domain D, the function $fix: (D \to D) \to D$ is continuous.

Flat Domains

For any set $X, x \sqsubseteq x' \iff x = x'$ makes (X, \sqsubseteq) into a cpo, called the *discrete* cpo with underlying set X. For $X_{\perp} = X \cup \{\bot\}$ with $x \sqsubseteq x' \iff x = x' \lor x = \bot$, (X_{\perp}, \sqsubseteq) is a domain called the *flat* domain.

Scott Induction

A subset $S \subseteq D$ is called *chain-closed* iff for all chains d_n in D $(\forall n \ge 0.d_n \in S) \Rightarrow (\bigsqcup_{n>0} d_n) \in S.$

If D is a domain, S is called *admissible* iff it is a chain-closed subset of D and $\perp \in S$.

A property $\Phi(d)$ is called chain-closed/admissible if its corresponding set, $\{d \in D | \Phi(d)\}$ is.

Scott's Fixed Point Induction Principle: for continuous $f: D \to D$ on domain D, to show that $fix(f) \in S$ for admissible $S \subseteq D$ it suffices to prove that $\forall d \in D(d \in S \Rightarrow f(d) \in S)$.

Basic relations: for cpo D, $\{(x, y) \in D \times D | x \sqsubseteq y\}$ and $\{(x, y) \in D \times D | x = y\}$ are chain closed subsets.

Inverse image: for continuous $f: D \to E$ between cpos D and E, for a chain-closed subset S of E, $f^{-1}S = \{x \in D | f(x) \in S\}$ is a chain-closed subset.

Logical operations: for cpo D with chain-closed subsets S and T, then $S \cup T$ and $S \cap T$ are chain-closed subsets since any chain will have to visit one of the sets infinitely often, so we can use the lub from that set.

Infinite intersections: for cpo D with a family of chain-closed subsets S_i indexed by a set I, $\bigcap_{i \in I} S_i$ is a chain-closed subset of D. This doesn't work for unions (consider unioning together an infinite number of singleton sets to build arbitrary chain-closed sets..).

PCF

 $\tau ::= nat |bool| \tau \to \tau$

$$\begin{split} M &::= 0 | succ(M) | pred(M) | zero(M) | true | false | if M then M else \mathbb{M} | x | f(x) := \rho(x) \in [\Gamma(x)] \text{ where } x \in dom(\Gamma) \\ \tau.M | M M | fix(M) \text{ with } x \in \mathbb{V} \text{ and expressions identified up to} \end{split}$$

Typing relations are of the form $\Gamma \vdash M : \tau$ where Γ is a finite partial function mapping variables to types and obey the standard rules, which have the unique-type property and that if $\Gamma \vdash M : \tau$ and $\Gamma[x \to \tau] \vdash M' : \tau'$ then $\Gamma \vdash M'[M/x] : \tau'$.

The evaluation relation takes the form $M \Downarrow_{\tau} V$ where V is a value $(V ::= 0 | succ(V) | true | false | fn x : \tau.M)$. The evaluation rules are also standard, and have the determinism property. The only interesting one is that:

$$\frac{M fix(M) \Downarrow_{\tau} V}{fix(M) \Downarrow_{\tau} V}$$

Aims Of Semantics

Types τ map to domains $\llbracket \tau \rrbracket$, terms $M : \tau$ map to elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$ and $\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$.

Soundness: for any type τ , $M \Downarrow \tau V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.

Adequacy: for $\tau = bool$ or nat, $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket \Rightarrow M \Downarrow_{\tau} V$.

Contextual equivalence: if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the observable results of executing the program. $\Gamma \vdash M_1 \cong_{ctx} M_2 : \tau$ holds iff the typings hold and for all contexts \mathcal{C} where $\mathcal{C}[M_1]$ and $\mathcal{C}[M_2]$ are closed terms of type γ , $\mathcal{C}[M_1] \Downarrow_{\gamma} V \iff \mathcal{C}[M_2] \Downarrow_{\gamma} V$.

For all types τ and closed terms M_1 , M_2 of that type, if $\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \in \llbracket \tau \rrbracket$ then $M_1 \cong_{ctx} M_2 : \tau$ by soundness, compositionality and adequacy.

Types

 $\llbracket nat \rrbracket = \mathbb{N}_{\perp}, \llbracket bool \rrbracket = \mathbb{B}_{\perp} \text{ (flat domain)}$ $\llbracket \tau \to \tau' \rrbracket = \llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket \text{ (function domain)}$

Terms

For well typed M, define a function $\llbracket \Gamma \vdash M \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$ where $\llbracket \Gamma \rrbracket = \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket = \{\rho : dom(\Gamma) \rightarrow \bigcup_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket | \forall x \in dom(\Gamma).\rho(x) \in \llbracket \Gamma(x) \rrbracket \}$ whose elements are mapping variables to an element in the domain of the corresponding type.

Semantic rules are defined by structural induction and are both continuous and strict:

$$\llbracket \Gamma \vdash succ(M) \rrbracket(\rho) = \begin{cases} \llbracket \Gamma \vdash M \rrbracket(\rho) + 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \bot \\ \bot & \text{otherwise} \end{cases}$$
$$\llbracket \Gamma \vdash pred(M) \rrbracket(\rho) = \begin{cases} \llbracket \Gamma \vdash M \rrbracket(\rho) - 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) > 0 \\ \bot & \text{otherwise} \end{cases}$$

$$\begin{split} & \llbracket \Gamma \vdash zero(M) \rrbracket(\rho) = \begin{cases} true & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = 0\\ false & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) > 0\\ \bot & \text{otherwise} \end{cases} \\ & \llbracket \Gamma \vdash M_2 \rrbracket(\rho) & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = true\\ & \llbracket \Gamma \vdash M_2 \rrbracket(\rho) & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = true\\ & \llbracket \Gamma \vdash M_3 \rrbracket(\rho) & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = false\\ \bot & \text{otherwise} \end{cases} \\ & \llbracket \Gamma \vdash M_1 M_2 \rrbracket(\rho) = (\llbracket \Gamma \vdash M_1 \rrbracket(\rho))(\llbracket \Gamma \vdash M_2 \rrbracket(\rho)) \\ & \llbracket \Gamma \vdash fn x : \tau .M \rrbracket(\rho) = \lambda d \in \llbracket \tau \rrbracket .\llbracket \Gamma[x \to \tau] \vdash M \rrbracket(\rho[x \to d]) \\ & (\text{where } x \notin dom(\Gamma)) \end{cases} \\ & \llbracket \Gamma \vdash fix(M) \rrbracket(\rho) = fix(\llbracket \Gamma \vdash M \rrbracket(\rho)) \end{split}$$

For closed terms $M \in PCF_{\tau}$, $\emptyset \vdash M:\tau$ so we get the only Γ -environment being \bot and since functions $\{\bot\} \to D$ are in bijection with D we can identify the denotation of closed PCF terms with elements of the domain denoting their type: $\llbracket M \rrbracket = \llbracket \emptyset \vdash M \rrbracket(\bot) \in \llbracket \tau \rrbracket$.

Continuity Aside

Constant functions are continuous.

Projections in dependent product domains are continuous.

If $f: D \to E$ and $g: E \to F$ are continuous functions between cpos, then their composition $g \circ f: D \to F$ is also continuous.

Function pairing $\langle f, g \rangle(x) = (f(x), g(x))$ is continuous.

Substitution And Soundness

Substitution: if $\Gamma \vdash M : \tau$ and $\Gamma[x \to \tau] \vdash M' : \tau'$ then $\llbracket \Gamma \vdash M'[M/x] \rrbracket(\rho) = \llbracket \Gamma[x \to \tau] \vdash M' \rrbracket(\rho[x \to \llbracket \Gamma \vdash M] \rrbracket(\rho)]).$

Soundness: for all types τ and closed terms $M, V \in PCF_{\tau}$, if $M \Downarrow_{\tau} V$ is derivable then $[\![M]\!]$ and $[\![V]\!]$ are equal elements of the domain $[\![\tau]\!]$.

Adequacy

The family of binary relations $\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times PCF_{\tau}$ indexed by types τ relates elements of the domain $\llbracket \tau \rrbracket$ to closed terms of type τ .

A Γ -substitution σ is a function mapping each variable $x \in dom(\Gamma)$ to a closed PCF term $\sigma(x)$ of type $\Gamma(x)$.

Say that $\rho \triangleleft_{\Gamma} \sigma \iff \forall x \in dom(\Gamma).\rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$ (i.e. lifting the relation from types and terms to type environments and Γ -substitutions).

$$d \triangleleft_{nat} M \iff (d \in \mathbb{N} \Rightarrow M \Downarrow_{nat} succ^d(0))$$

 $\begin{array}{l} d \triangleleft_{bool} M \iff (d = true \Rightarrow M \Downarrow_{bool} true) \land (d = false \Rightarrow M \Downarrow_{bool} false) \end{array}$

 $d \triangleleft_{\tau \to \tau'} M \iff \forall e, N. (e \triangleleft_{\tau} N \Rightarrow d(e) \triangleleft_{\tau'} M N)$

Fundamental Property: If $\Gamma \vdash M : \tau$ is a valid typing, then $\rho \triangleleft_{\Gamma} \sigma \Rightarrow \llbracket \Gamma \vdash M \rrbracket(\rho) \triangleleft_{\tau} M[\sigma]$ where $M[\sigma]$ is the term resulting from the simultaneous substitution of $\sigma(x)$ for x in M for each $x \in dom(\Gamma)$. This specializes to $\llbracket M \rrbracket \triangleleft_{\tau} M$.

From this we can prove that $\llbracket M \rrbracket = \llbracket V \rrbracket \Rightarrow M \Downarrow_{\tau} V$ as required. For example, if $\tau = nat$, then for some $n \in \mathbb{N}$ $V = succ^{n}(0)$ and so:

$$M] = [[succ^{n}(0)]]$$

$$\Rightarrow (n = [[M]]) \triangleleft_{\tau} M$$

$$\Rightarrow M \Downarrow succ^{n}(0)$$

Extensionality

 \square

 $\Gamma \vdash M_1 \leq_{ctx} M_2 : \tau$ holds iff the typings hold and for all contexts \mathcal{C} for which $\mathcal{C}[M_1]$ and $\mathcal{C}[M_2]$ are closed terms of type $\gamma \in \{nat, bool\}$ and for all values $V : \gamma$, it is true that $\mathcal{C}[M_1] \Downarrow_{\gamma} V \Rightarrow \mathcal{C}[M_2] \Downarrow_{\gamma} V$.

It can be shown that for all types τ and terms M_1, M_2 it is true that $M_1 \leq_{ctx} M_2 : \tau \iff [\![M_1]\!] \triangleleft_{\tau} M_2$ and for $\tau \in \{nat, bool\}$ it is also true that $M_1 \leq_{ctx} M_2 : \tau \iff \forall V : \tau(M_1 \Downarrow_{\tau} V \Rightarrow M_2 \Downarrow_{\tau} V)$ i.e. their evaluations are syntactically equal, and for $\tau = \tau_1 \rightarrow \tau_2, M_1 \leq_{ctx} M_2 : \tau \iff \forall M : \tau_1(M_1 M \leq_{ctx} M_2 M : \tau_2)$ i.e. their evaluation at all points obey the equality.

Full Abstraction

There are contextually equivalent PCF terms with unequal denotations. A denotational semantics is fully abstract if this is not the case.

por	true	false	\perp
true	true	true	true
false	true	false	\perp
1	true	\perp	\perp

There is no closed PCF term $P : bool \to (bool \to bool)$ satisfying $\llbracket P \rrbracket = por$. Now consider:

$$\begin{array}{lll} T_i &=& fn\,f:bool \rightarrow (bool \rightarrow bool).\\ && if\,(f\,true\,\Omega)\,then\\ && if\,(f\,true\,\Omega)\,then\\ && if\,(f\,false\,false)\,then\,\Omega\,else\,B_i\\ && else\,\Omega\\ && else\,\Omega \end{array}$$

Where $B_1 = true$ and $B_2 = false$. Now $T_1 \cong_{ctx} T_2 : (bool \rightarrow (bool \rightarrow bool)) \rightarrow bool$ but $\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket$. Contextual equivalence can be proved by using the extensionality property on T_i

and then just considering all M of the argument type. This requires that M evaluates to *true*, *true* and *false* (in order that we get a value) on the arguments (*true*, Ω), (Ω , *true*) and (*false*, *false*) respectively. This means that [M] coincides with *por*, which is impossible and hence the terms are trivially contextually equivalent because they can never return a value in any PCF context.

Extending PCF with *por* in the obvious way and our semantics with the additional clause:

 $\llbracket \Gamma \vdash por(M_1, M_2) \rrbracket(\rho) = por(\llbracket \Gamma \vdash M_1 \rrbracket(\rho))(\llbracket \Gamma \vdash M_2 \rrbracket(\rho))$

Yields a language which is fully abstract with respect to our semantics i.e. $\Gamma \vdash M_1 \cong_{ctx} M_2 : \tau \iff [\![\Gamma \vdash M_1]\!] = [\![\Gamma \vdash M_2]\!]$