
Least Fixed Points

A relation v is a partial order iff it is reflexive, transitive and
anti-symmetric. Paired with a set D it forms a poset (D,v).

The least element of a poset, ⊥, satisfies ∀x ∈ D. ⊥v x if it
exists.

The least upper bound of a chain d0 v d1 v . . . is written⊔
n≥0 dn if it exists, which satisfies ∀n ∈ N.dn v

⊔
n≥0 dn and

∀d ∈ D.(∀m ≥ 0.dm v d)⇒
⊔
n≥0 dn v d.

A chain complete poset or cpo is a poset (D,v) in which all
countable increasing chains have lubs. A domain is a cpo that
further possesses a least element.

Domain Of Partial Functions

D = {f |f is apartial function, dom(f) ⊆ X, im(f) ⊆ Y }

f v g ⇐⇒ dom(f) ⊆ dom(g) ∧ (∀x ∈ dom(f).f(x) = g(x))

The lub is f(x) =

{
fn(x) if x ∈ dom(fn), some n
undefined otherwise

, and

⊥(x) = undefined

Poset Mappings

f : D → E is monotone if ∀d, d′ ∈ D.d v d′ ⇒ f(d) v f(d′).

f : D → E is continuous if it is monotone and f(
⊔
n≥0 dn) =⊔

n≥0 f(dn).

f : D → E is strict if f(⊥) = ⊥.

To check that monotone f is continuous it is sufficient to show
that for every chain dnin D, f(

⊔
n≥0 dn) v

⊔
n≥0 f(dn) holds

in E.

Fixed Points

If D is a poset and f : D → D, d ∈ D is a pre-fixed point
of f if f(d) v d. The least such point is fix(f) and satisfies
f(fix(f)) v fix(f) and ∀d ∈ D.f(d) v d⇒ fix(f) v d.

Tarski Fixed Point Theorem: for continuous f , fix(f) =⊔
n≥0 f

n(⊥) and furthermore f(fix(f)) = fix(f) and hence
is the least fixed point of f as well.

To see this is true, first observe that fn(⊥)
forms a chain since f0(⊥) = ⊥ v f1(⊥)
and by monotonicity

(
fn(⊥) v fn+1(⊥)

)
⇒(

fn+1(⊥) = f(fn(⊥)) v f(fn+1(⊥)) = fn+2(⊥)
)
, with the

rest following by induction. Now:

f(fix(f)) = f(
⊔
n≥0

fn(⊥))

=
⊔
n≥0

f(fn(⊥))

=
⊔
n≥0

fn+1(⊥)

=
⊔
n≥0

fn(⊥)

= fix(f)

Where the penultimate step depends on the fact that discarding
finite elements at the start of a chain doesn’t change its lub. It
is easy to show that ∀n ∈ N.fn(⊥) v d for any d ∈ D such that
f(d) v d by induction on n.

Domain Constructions

Product

D = D1 ×D2

(d1, d2) v (d′1, d
′
2) ⇐⇒ d1 v1 d

′
1 ∧ d2 v d′2⊔

n≥0(d1,n, d2,n) = (
⊔
i≥0 d1,i,

⊔
j≥0 d2,j)

Continuous Functions Of Two Arguments

f : D × E → F for cpos D,E and F is monotone iff it is
monotone in each argument separately and continuous iff it
preserves lubs of chains in each argument separately.

Diagonalization

If the family of elements dm,n ∈ D satisfies m ≤ m′ ∧ n ≤
n′ ⇒ dm,n v dm′,n′ then

⊔
n≥0 d0,n v

⊔
n≥0 d1,n v . . . and⊔

m≥0

⊔
n≥0 dm,n =

⊔
k≥0 dk,k =

⊔
n≥0

⊔
m≥0 dm,n

Functions

For cpos (D,vD) and (E,vE), the function cpo (D → E,v)
has:

D → E = {f |f : D → E, f is a continuous function}

f v f ′ ⇐⇒ ∀d ∈ D.f(d) vE f ′(d)

(
⊔
n≥0 fn)(d) =

⊔
n≥0 fn(d)

If E is a domain then ⊥D→E(d) = ⊥E
The functions ev(f, d) = f(d) and cur(f)(d′) = λd ∈ D.f(d′, d)
are continuous.
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Fixed Point

For a domain D, the function fix : (D → D) → D is continu-
ous.

Flat Domains

For any set X, x v x′ ⇐⇒ x = x′ makes (X,v) into a
cpo, called the discrete cpo with underlying set X. For X⊥ =
X ∪{⊥} with x v x′ ⇐⇒ x = x′∨x = ⊥, (X⊥,v)is a domain
called the flat domain.

Scott Induction

A subset S ⊆ D is called chain-closed iff for all chains dnin D
(∀n ≥ 0.dn ∈ S)⇒ (

⊔
n≥0 dn) ∈ S.

If D is a domain, Sis called admissible iff it is a chain-closed
subset of D and ⊥ ∈ S.

A property Φ(d) is called chain-closed/admissible if its corre-
sponding set, {d ∈ D|Φ(d)} is.

Scott’s Fixed Point Induction Principle: for continuous f : D →
D on domain D, to show that fix(f) ∈ S for admissible S ⊆ D
it suffices to prove that ∀d ∈ D(d ∈ S ⇒ f(d) ∈ S).

Basic relations: for cpo D, {(x, y) ∈ D×D|x v y} and {(x, y) ∈
D ×D|x = y} are chain closed subsets.

Inverse image: for continuous f : D → E between cpos D and
E, for a chain-closed subset S of E, f−1S = {x ∈ D|f(x) ∈ S}
is a chain-closed subset.

Logical operations: for cpo D with chain-closed subsets S and
T , then S∪T and S∩T are chain-closed subsets since any chain
will have to visit one of the sets infinitely often, so we can use
the lub from that set.

Infinite intersections: for cpo D with a family of chain-closed
subsets Siindexed by a set I,

⋂
i∈I Si is a chain-closed subset of

D. This doesn’t work for unions (consider unioning together an
infinite number of singleton sets to build arbitrary chain-closed
sets..).

PCF

τ ::= nat|bool|τ → τ

M ::= 0|succ(M)|pred(M)|zero(M)|true|false|if M thenM elseM |x|fnx :
τ.M |MM |fix(M) with x ∈ V and expressions identified up to
α-conversion.

Typing relations are of the form Γ ` M : τ where Γ is a fi-
nite partial function mapping variables to types and obey the
standard rules, which have the unique-type property and that
if Γ `M : τ and Γ[x→ τ ] `M ′ : τ ′ then Γ `M ′[M/x] : τ ′.

The evaluation relation takes the form M ⇓τ V where V is a
value (V ::= 0|succ(V )|true|false|fnx : τ.M). The evaluation
rules are also standard, and have the determinism property.
The only interesting one is that:
M fix(M) ⇓τ V
fix(M) ⇓τ V

Aims Of Semantics

Types τ map to domains [[τ ]], terms M : τ map to elements
[[M ]] ∈ [[τ ]] and [[M ]] = [[M ′]]⇒ [[C[M ]]] = [[C[M ′]]].

Soundness: for any type τ , M ⇓ τV ⇒ [[M ]] = [[V ]].

Adequacy: for τ = bool or nat, [[M ]] = [[V ]] ∈ [[τ ]]⇒M ⇓τ V .

Contextual equivalence: if any occurrences of the first phrase
in a complete program can be replaced by the second phrase
without affecting the observable results of executing the pro-
gram. Γ `M1

∼=ctx M2 : τ holds iff the typings hold and for all
contexts C where C[M1] and C[M2] are closed terms of type γ,
C[M1] ⇓γ V ⇐⇒ C[M2] ⇓γ V .

For all types τand closed terms M1, M2 of that type, if
[[M1]] = [[M2]] ∈ [[τ ]] then M1

∼=ctx M2 : τ by soundness, compo-
sitionality and adequacy.

Types

[[nat]] = N⊥, [[bool]] = B⊥ (flat domain)

[[τ → τ ′]] = [[τ ]]→ [[τ ′]] (function domain)

Terms

For well typed M , define a function [[Γ ` M ]] : [[Γ]] →
[[τ ]] where [[Γ]] =

∏
x∈dom(Γ)[[Γ(x)]] = {ρ : dom(Γ) →⋃

x∈dom(Γ)[[Γ(x)]]|∀x ∈ dom(Γ).ρ(x) ∈ [[Γ(x)]]}whose elements
are mapping variables to an element in the domain of the cor-
responding type.

Semantic rules are defined by structural induction and are both
continuous and strict:

[[Γ ` 0]](ρ) = 0 ∈ [[nat]]

[[Γ ` true]](ρ) = true ∈ [[bool]]

[[Γ ` false]](ρ) = false ∈ [[bool]]

[[Γ ` x]](ρ) = ρ(x) ∈ [[Γ(x)]] where x ∈ dom(Γ)

[[Γ ` succ(M)]](ρ) =

{
[[Γ `M ]](ρ) + 1 if [[Γ `M ]](ρ) 6= ⊥
⊥ otherwise

[[Γ ` pred(M)]](ρ) =

{
[[Γ `M ]](ρ)− 1 if [[Γ `M ]](ρ) > 0

⊥ otherwise
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[[Γ ` zero(M)]](ρ) =


true if [[Γ `M ]](ρ) = 0

false if [[Γ `M ]](ρ) > 0

⊥ otherwise

[[Γ ` if M1 thenM2 elseM3]](ρ) =
[[Γ `M2]](ρ) if [[Γ `M1]](ρ) = true

[[Γ `M3]](ρ) if [[Γ `M1]](ρ) = false

⊥ otherwise

[[Γ `M1M2]](ρ) = ([[Γ `M1]](ρ))([[Γ `M2]](ρ))

[[Γ ` fnx : τ.M ]](ρ) = λd ∈ [[τ ]].[[Γ[x → τ ] ` M ]](ρ[x → d])
(where x /∈ dom(Γ))

[[Γ ` fix(M)]](ρ) = fix([[Γ `M ]](ρ))

For closed terms M ∈ PCFτ , ∅ `M:τ so we get the only
Γ-environment being ⊥ and since functions {⊥} → D are
in bijection with D we can identify the denotation of closed
PCF terms with elements of the domain denoting their type:
[[M ]] = [[∅ `M ]](⊥) ∈ [[τ ]].

Continuity Aside

Constant functions are continuous.

Projections in dependent product domains are continuous.

If f : D → E and g : E → F are continuous functions between
cpos, then their composition g ◦ f : D → F is also continuous.

Function pairing 〈f, g〉 (x) = (f(x), g(x)) is continuous.

Substitution And Soundness

Substitution: if Γ ` M : τ and Γ[x → τ ] ` M ′ : τ ′ then
[[Γ `M ′[M/x]]](ρ) = [[Γ[x→ τ ] `M ′]](ρ[x→ [[Γ `M ]](ρ)]).

Soundness: for all types τand closed terms M,V ∈ PCFτ , if
M ⇓τ V is derivable then [[M ]] and [[V ]] are equal elements of
the domain [[τ ]].

Adequacy

The family of binary relations /τ ⊆ [[τ ]] × PCFτ indexed by
types τ relates elements of the domain [[τ ]] to closed terms of
type τ .

A Γ-substitution σ is a function mapping each variable x ∈
dom(Γ) to a closed PCF term σ(x) of type Γ(x).

Say that ρ /Γ σ ⇐⇒ ∀x ∈ dom(Γ).ρ(x) /Γ(x) σ(x) (i.e. lifting
the relation from types and terms to type environments and
Γ-substitutions).

d /natM ⇐⇒ (d ∈ N⇒M ⇓nat succd(0))

d /bool M ⇐⇒ (d = true ⇒ M ⇓bool true) ∧ (d = false ⇒
M ⇓bool false)

d /τ→τ ′ M ⇐⇒ ∀e,N.(e /τ N ⇒ d(e) /τ ′ M N)

Fundamental Property: If Γ ` M : τ is a valid typing, then
ρ /Γ σ ⇒ [[Γ `M ]](ρ) /τ M [σ] where M [σ] is the term resulting
from the simultaneous substitution of σ(x) for x in M for each
x ∈ dom(Γ). This specializes to [[M ]] /τ M .

From this we can prove that [[M ]] = [[V ]]⇒M ⇓τ V as required.
For example, if τ = nat, then for some n ∈ N V = succn(0)
and so:

[[M ]] = [[succn(0)]]

⇒ (n = [[M ]]) /τ M

⇒ M ⇓ succn(0)

Extensionality

Γ ` M1 ≤ctx M2 : τ holds iff the typings hold and for all
contexts C for which C[M1] and C[M2] are closed terms of type
γ ∈ {nat, bool} and for all values V : γ, it is true that C[M1] ⇓γ
V ⇒ C[M2] ⇓γ V .

It can be shown that for all types τ and termsM1,M2 it is true
that M1 ≤ctx M2 : τ ⇐⇒ [[M1]] /τ M2 and for τ ∈ {nat, bool}
it is also true that M1 ≤ctx M2 : τ ⇐⇒ ∀V : τ(M1 ⇓τ V ⇒
M2 ⇓τ V ) i.e. their evaluations are syntactically equal, and
for τ = τ1 → τ2, M1 ≤ctx M2 : τ ⇐⇒ ∀M : τ1(M1M ≤ctx
M2M : τ2) i.e. their evaluation at all points obey the equality.

Full Abstraction

There are contextually equivalent PCF terms with unequal de-
notations. A denotational semantics is fully abstract if this is
not the case.
por true false ⊥
true true true true
false true false ⊥
⊥ true ⊥ ⊥

There is no closed PCF term P : bool→ (bool→ bool) satisfying
[[P ]] = por. Now consider:

Ti = fn f : bool→ (bool→ bool).

if (f trueΩ) then

if (f trueΩ) then

if (f false false) thenΩ elseBi

elseΩ

elseΩ

Where B1 = true and B2 = false. Now T1
∼=ctx T2 : (bool →

(bool → bool)) → bool but [[T1]] 6= [[T2]]. Contextual equiva-
lence can be proved by using the extensionality property on Ti
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and then just considering all M of the argument type. This
requires that M evaluates to true, true and false (in order
that we get a value) on the arguments (true,Ω), (Ω, true) and
(false, false) respectively. This means that [[M ]] coincides with
por, which is impossible and hence the terms are trivially con-
textually equivalent because they can never return a value in
any PCF context.

Extending PCF with por in the obvious way and our semantics
with the additional clause:

[[Γ ` por(M1,M2)]](ρ) = por([[Γ `M1]](ρ))([[Γ `M2]](ρ))

Yields a language which is fully abstract with respect to our
semantics i.e. Γ `M1

∼=ctx M2 : τ ⇐⇒ [[Γ `M1]] = [[Γ `M2]]
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