
E/R
Mapping

Entity: real world object, defined
by entity type

 Entity type: rectangles. Can be
weak (can only be identified by
considering the primary key of
owner, implies total participation)

 Attributes: ovals, attached to
entity types and relationships by
lines. Can be key (underlined),
composite

 Relationships: diamonds, lines
with labelled multiplicities. May
relate entities and other
relationships. Can be recursive,
totally participative (bold line,
when every entity in the
connected type participates in at
least one of our relationships)

 ISA hierarchies: triangles, cause
attribute, relation inheritance

 Aggregation: enclosing box for
relating entire entity set

Relations Instance (data) and schema
(names and types of columns)

 Domains are sets of values:
domains must be atomic

 Relation arity = columns
 Relation cardinality = rows
 Never contain duplicates
Entity
Mapping

Weak entities become entities
which contain a foreign key to
their owner entity

 ISA hierarchies can become 3
relations (1 containing common
attributes) or 2 (containing all)

Relational
Algebra

σc: selection with conditions C
πA: projection with attributes A
(nb: must eliminate duplicates)
ρA:=B: rename A to B in schema
Set theoretic union, intersection,
difference, product

Derived
Operators

R1 ⋈ R2 = σc(R1xR2) with

conditions C: commonly equality
Equi-join: theta join where the
condition is field name equality
Natural join: equi-join on all
common fields, where the
duplicate fields are removed
A/B = πx(A) – πx((πX(A)xB) - A):
set of a in A such that for every y
in B there is a (x,y) in A

Domain Queries have the form

Relational
Calculus

)},...,(|,...,{ 11 nn xxFxx : answer

is the tuples that make F true
E.g. names of sailors who reserved all boats:

))}.Re,,(

),(.(,

,,,.,,|{

BBISIIservesDBISI

BoatsCBCB

SailorsARNIARIN

Tuple
Relational
Calculus

Variable range over tuples rather
than field values: dot notation
accesses attributes

E.g. names of sailors who reserved all boats:

}......

.Re..|{

nameSnamePsidRsidSbidBbidR

sserevationRBoatsBSailorsSP

Relational
Complete.

Language is relationally complete if
it can express all the queries of the
relational algebra

 Can encode relational algebra in
the relational calculus, not other
way

 Safe queries always have a finite
answer: undecidable condition

SQL LIKE: _ one char, % zero or more
 Arithmetic in SELECT, WHERE
 UNION, INTERSECT, IN
CREATE TABLE Students

(sid CHAR(20), name CHAR(20) LIKE

‘[A-Z]%’, age INTEGER NOT NULL

BETWEEN 18 AND 120, PRIMARY KEY

(sid), UNIQUE(name, age), FOREIGN

KEY (sid) REFERENCES StudentsToo,

CHECK(name) IN (‘Bob’, ‘Fred’);
SELECT * FROM R LEFT OUTER JOIN

Students ON R.sid = Students.sid

CREATE VIEW E(sid, sname) AS SELECT

sid, sname FROM S WHERE rating > 9

Bag
Semantics

{1,2}{2,3}={1,2,2,3}

{1,1,2}{1,2,3}={1,2}
{1,2,1}-{1,2,3,3}={1}

Algebra
Extensions

δ: duplicate elimination
τL: sort lexicographically by
attributes L; returns list
γL: group by attributes in L and
then introduce attributes for each
aggregate function, remove dups

 Extend projection with arithmetic
NULL Outer joins pad columns with

NULLs for tuples that don’t join
 o⋈o: full, o⋈: left, ⋈o: right

 Left return all tuples from left
table, some from right

Functional
Dependency

XY if attributes in set Y are

determined by those in X
 Relation instance satisfies FD if

YtYtXtXtRtt 212121

 F+
 is the set of FDs logically

implied by F (closure)

Armstrong’s
Axioms

Show how to construct the
closure of a FD set

 Both sound and complete
Reflexivity:)(YXXY

Augmentation:),,()(WYWXYX

Transitivity:)()()(ZXZYYX

They have these consequences:
Union:),()()(ZYXZXYX

Pseud-trans:),(),()(ZWXZYWYX

Decompose:)()()(ZXYZYX

Heaths Rule)()(,, RRR CAABA

Minimal
Cover

FD set is minimal if every FD has
a single element Y, no FD can be
removed without losing equality
and no FDs X can be shrunk
without losing equality

Attribute
Closure

For XY, grow consequences of

X, adding Y’ if X’Y’ F for X’

X. Now F XY iff Y X+

Candidate
Key

For R(A1:T1,…,An:Tn) with FDs F,
X is a candidate key for R if
XA1,..,An F+ and no proper

subset of X is a candidate key

De-
composition

A collection of (relation, query)
pairs and Q0 so that the queries
can retrieve the relation from R
and Q0 can retrieve R from pairs

 {R1,…,Rk} is a lossless join
decomposition wrt F if for all r

satisfying F, πR1(r) ⋈...⋈ πRk(r) = r

Dependency
Preserving

Projection of FD set F onto Z:

}{ ZYXFYXFz

 Decomposition {R1,…,Rk}
dependency preserving if

)...(1 RkR FFF

Normal
Forms

Prime attributes appear in
candidate keys, superkeys are
supersets of candidate keys

First NF Domain of all attributes must be
atomic (violated by e.g. table w/
student IDs list attribute)

Second NF Partial FD XY if for some AX,

(X-{A})Y (i.e. not minimal)

 Every non-prime attribute is not
partially dependent on any key

Third NF If for all XAF+ then either

AX, X is a superkey or A is a

member of some candidate key
BCNF If for all XAF+ then either

AX or X is a superkey: unlike

3NF it not necessarily possible

Transaction Set of physical operations that
form one logical operation

ACID Atomicity: need log
Database consistency: every
transaction sees consistent DB,
follows from transaction AI+C

Schedule List of actions from a set of
transactions

 Well formed: schedule actions
in same order as in transaction

 Complete: contains commit or
abort action for all transactions

 Serial: actions of transactions
not interleaved, used for proof

WR Conflict T2 reads a database object
modified by uncommitted T1

RW Conflict T2 changes the value of an
object read by in-progress T1

WW Conflict T2 writes to object already
written by in-progress T1

S2PL Obtain shared S lock before
reading, exclusive X lock before
writing,released when
complete, phases independent,
commutative only needs shared
lock if object not read back

OLAP Historical database for analysis
 Mostly reads, optimize schema

for query processing
 ROLAP: backed by relational DB
 MOLAP: multidimensional DB
Data Cube Multidimensional representation

of data, e.g. sales by dimensions
product, date, country

 Can include aggregates in cube,
e.g. sales sums at edges

Data
Warehouse

Subject-oriented, integrated,
time-variant, non-volatile

Operations Roll up, drill down: move
between high/low level summary

 Concept hierarchy navigation: all
 (Europe (Germany|Spain) |

North America (Mexico|..))

Schema Star: fact table in the middle
connected to dimension tables
(e.g. store ID to name mapping)

 Constellation: dimensions tables
normalised into further stars

 Cube: breaks relational model,
possibly N-dimensional.
Operators like sale(*,*,*): total
sales, sale(c2,p2,*): sum of sales
data for c2, p2 over time

