E/R Mapping	Entity: real world object, defined by entity type Entity type: rectangles. Can be weak (can only be identified by considering the primary key of owner, implies total participation) Attributes: ovals, attached to entity types and relationships by lines. Can be key (underlined), composite Relationships: diamonds, lines with labelled multiplicities. May relate entities and other relationships. Can be recursive, totally participative (bold line, when every entity in the connected type participates in at least one of our relationships) ISA hierarchies: triangles, cause attribute, relation inheritance Aggregation: enclosing box for relating entire entity set	Relational Calculus E.g. names of $\{ < N > \exists I, R, A \\ \forall B, C. (\neg (< B, \forall (\exists < SI, BI, D > TupleRelationalCalculusE.g. names of\{ P \mid \forall S \in Sailo \\ R.bid = B.bid \\ RelationalComplete.$	$\{\langle x_1,,x_n \rangle F(x_1,,x_n)\}$: answer is the tuples that make F true sailors who reserved all boats: $A, \langle I, N, R, A \rangle \in Sailors \land$ $C \geq \in Boats$) \lor $P \in Re serves.I = SI \land BI = B$)) Variable range over tuples rather than field values: dot notation accesses attributes sailors who reserved all boats: $rs. \forall B \in Boats. \exists R \in Re \ serevations.$ $\land S.sid = R.sid \land P.name = S.name$ Language is relationally complete if it can express all the queries of the relational algebra Can encode relational algebra in the relational calculus, not other way Safe queries always have a finite answer: undecidable condition LIKE: _ one char, % zero or more Arithmetic in SELECT, WHERE UNION, INTERSECT, IN
Entite	(names and types of columns) Domains are sets of values: domains must be atomic Relation arity = columns Relation cardinality = rows Never contain duplicates	CREATE TAB (sid CHAR(`[A-Z]%', BETWEEN 18 (sid), UNI KEY (sid) CHECK(name	LE Students 20), name CHAR(20) LIKE age INTEGER NOT NULL AND 120, PRIMARY KEY QUE(name, age), FOREIGN REFERENCES StudentsToo,) IN ('Bob', 'Fred'):
Entity Mapping	weak entities become entities which contain a foreign key to their owner entity ISA hierarchies can become 3 relations (1 containing common attributes) or 2 (containing all)	SELECT * F Students O CREATE VIE sid, sname Bag	ROM R LEFT OUTER JOIN N R.sid = Students.sid W E(sid, sname) AS SELECT FROM S WHERE rating > 9 $\{1,2\} \cap \{2,3\} = \{1,2,2,3\}$
Relational Algebra	σ_c : selection with conditions C Π_A : projection with attributes A (nb: must eliminate duplicates) $\rho_{A:=B}$: rename A to B in schema Set theoretic union, intersection, difference, product	Algebra Extensions	$\{1,1,2\} \cap \{1,2,3\} = \{1,2\}$ $\{1,2,1\} - \{1,2,3,3\} = \{1\}$ δ : duplicate elimination T_L : sort lexicographically by attributes L; returns <i>list</i> γ_L : group by attributes in L and
Derived Operators	$R_1 \bowtie R_2 = \sigma_c(R_1 x R_2)$ with conditions C: commonly equality Equi-join: theta join where the condition is field name equality Natural join: equi-join on all common fields, where the duplicate fields are removed $A/B = \pi_x(A) - \pi_x((\pi_x(A)xB) - A)$: set of a in A such that for every y in A there is a (x y) in A	NULL Functional	then introduce attributes for each aggregate function, remove dups Extend projection with arithmetic Outer joins pad columns with NULLs for tuples that don't join $^{\circ_{M}\circ}$: full, $^{\circ_{M}}$: left, \bowtie° : right Left return all tuples from left table, some from right X \rightarrow Y if attributes in set Y are
Domain	п в there is a (x,y) in A Queries have the form	Dependency	determined by those in X Relation instance satisfies FD if

Armstrong's Axioms Reflexivity: $Y \subseteq$ Augmentation: Transitivity: (X They have thes	$\forall t_1 t_2 \in R.t_1.X = t_2.X \rightarrow t_1.Y = t_2.Y$ F ⁺ is the set of FDs logically implied by F (closure) Show how to construct the closure of a FD set Both sound and complete $(X \rightarrow Y) \rightarrow (X, W \rightarrow Y, W)$ $\rightarrow Y) \land (Y \rightarrow Z) \rightarrow (X \rightarrow Z)$ e consequences:	BCNF Transaction ACID	member of some candidate key If for all $X \rightarrow A \in F^+$ then either $A \in X$ or X is a superkey: unlike 3NF it not necessarily possible Set of physical operations that form one logical operation Atomicity: need log Database consistency: every transaction sees consistent DB, follows from transaction AI+C
Union: $(X \to Y) \land (X \to Z) \to (X \to Y, Z)$ Pseud-trans: $(X \to Y) \land (W, Y \to Z) \to (X, W \to Z)$		Schedule	List of actions from a set of transactions
Decompose: $(X \to Y) \land (Z \subseteq Y) \to (X \to Z)$			Well formed: schedule actions
Heaths Rule	$R = \pi_{A,B}(R)\theta_A\pi_{A,C}(R)$		in same order as in transaction
Minimal Cover	FD set is minimal if every FD has a single element Y, no FD can be removed without losing equality and no FDs X can be shrunk without losing equality	WR Conflict	Complete: contains commit or abort action for all transactions Serial: actions of transactions not interleaved, used for proof T2 reads a database object
Attribute	For $X \rightarrow Y$, grow consequences of	RW Conflict	modified by uncommitted T1 T2 changes the value of an
Closure	X, adding Y' if $X' \rightarrow Y' \in F$ for $X' \subseteq Y$.		object read by in-progress T1
Candidate	For $R(A_1:T_1,,A_n:T_n)$ with FDs F,	WW Conflict	T2 writes to object already
Key	X is a candidate key for R if $X \rightarrow A_1,, A_n \in F^+$ and no proper subset of X is a candidate key	S2PL	Obtain shared S lock before reading, exclusive X lock before writing, released when
De- composition	A collection of (relation, query) pairs and Q_0 so that the queries can retrieve the relation from R and Q_0 can retrieve R from pairs		complete, phases independent, commutative only needs shared lock if object not read back
Dependency	{R ₁ ,,R _k } is a lossless join decomposition wrt F if for all r satisfying F, $\Pi_{R1}(r) \bowtie \bowtie \Pi_{Rk}(r) = r$ Projection of FD set F onto Z:	ULAP	Mostly reads, optimize schema for query processing ROLAP: backed by relational DB
Preserving	$F_{z} = \{X \rightarrow Y \in F^{+} \land X \cup Y \subseteq Z\}$ Decomposition {R ₁ ,,R _k } dependency preserving if $F^{+} = (F_{R_{1}} \cup \cup F_{R_{k}}) +$	Data Cube	Multidimensional representation of data, e.g. sales by dimensions product, date, country Can include aggregates in cube,
Normal Forms	Prime attributes appear in candidate keys, superkeys are supersets of candidate keys	Data Warehouse	e.g. sales sums at edges Subject-oriented, integrated, time-variant, non-volatile
First NF	Domain of all attributes must be atomic (violated by e.g. table w/ student IDs list attribute)	Operations	Roll up, drill down: move between high/low level summary Concept hierarchy navigation: all
Second NF	Partial FD X \rightarrow Y if for some A \in X, (X-{A}) \rightarrow Y (i.e. not minimal) Every non-prime attribute is not partially dependent on any key	Schema	\rightarrow (Europe \rightarrow (Germany Spain) North America \rightarrow (Mexico)) Star: fact table in the middle connected to dimension tables
Third NF	If for all $X \rightarrow A \in F^+$ then either $A \in X$, X is a superkey or A is a		(e.g. store 1D to name mapping) Constellation: dimensions tables normalised into further stars

Cube: breaks relational model, possibly N-dimensional. Operators like sale(*,*,*): total sales, sale(c2,p2,*): sum of sales data for c2, p2 over time