	E/R Mapping
	Entity: real world object, defined by entity type

	
	Entity type: rectangles. Can be weak (can only be identified by considering the primary key of owner, implies total participation)

	
	Attributes: ovals, attached to entity types and relationships by lines. Can be key (underlined), composite

	
	Relationships: diamonds, lines with labelled multiplicities. May relate entities and other relationships. Can be recursive, totally participative (bold line, when every entity in the connected type participates in at least one of our relationships)

	
	ISA hierarchies: triangles, cause attribute, relation inheritance

	
	Aggregation: enclosing box for relating entire entity set

	Relations
	Instance (data) and schema (names and types of columns)

	
	Domains are sets of values: domains must be atomic

	
	Relation arity = columns

	
	Relation cardinality = rows

	
	Never contain duplicates

	Entity Mapping
	Weak entities become entities which contain a foreign key to their owner entity

	
	ISA hierarchies can become 3 relations (1 containing common attributes) or 2 (containing all)

	Relational Algebra
	σc: selection with conditions C
πA: projection with attributes A (nb: must eliminate duplicates)
ρA:=B: rename A to B in schema
Set theoretic union, intersection, difference, product

	Derived Operators
	R1 ⋈ R2 = σc(R1xR2) with conditions C: commonly equality
Equi-join: theta join where the condition is field name equality
Natural join: equi-join on all common fields, where the duplicate fields are removed

A/B = πx(A) – πx((πX(A)xB) - A): set of a in A such that for every y in B there is a (x,y) in A

	Domain Relational Calculus
	Queries have the form
[image: image1.wmf])}

,...,

(

|

,...,

{

1

1

n

n

x

x

F

x

x

>

<

: answer is the tuples that make F true

	E.g. names of sailors who reserved all boats:

[image: image2.wmf]))}

.

Re

,

,

(

)

,

(

.(

,

,

,

,

.

,

,

|

{

B

BI

SI

I

serves

D

BI

SI

Boats

C

B

C

B

Sailors

A

R

N

I

A

R

I

N

=

Ù

=

>Î

<

$

Ú

>Î

<

Ø

"

Ù

>Î

<

$

>

<

	Tuple Relational Calculus
	Variable range over tuples rather than field values: dot notation accesses attributes

	E.g. names of sailors who reserved all boats:

[image: image3.wmf]}

.

.

.

.

.

.

.

Re

.

.

|

{

name

S

name

P

sid

R

sid

S

bid

B

bid

R

s

serevation

R

Boats

B

Sailors

S

P

=

Ù

=

Ù

=

Î

$

Î

"

Î

"

	Relational Complete.
	Language is relationally complete if it can express all the queries of the relational algebra

	
	Can encode relational algebra in the relational calculus, not other way

	
	Safe queries always have a finite answer: undecidable condition

	SQL
	LIKE: _ one char, % zero or more

	
	Arithmetic in SELECT, WHERE

	
	UNION, INTERSECT, IN

	CREATE TABLE Students

(sid CHAR(20), name CHAR(20) LIKE ‘[A-Z]%’, age INTEGER NOT NULL BETWEEN 18 AND 120, PRIMARY KEY (sid), UNIQUE(name, age), FOREIGN KEY (sid) REFERENCES StudentsToo, CHECK(name) IN (‘Bob’, ‘Fred’);

	SELECT * FROM R LEFT OUTER JOIN Students ON R.sid = Students.sid

	CREATE VIEW E(sid, sname) AS SELECT sid, sname FROM S WHERE rating > 9

	Bag Semantics
	{1,2}({2,3}={1,2,2,3}
{1,1,2}({1,2,3}={1,2}

{1,2,1}-{1,2,3,3}={1}

	Algebra Extensions
	δ: duplicate elimination

τL: sort lexicographically by attributes L; returns list
γL: group by attributes in L and then introduce attributes for each aggregate function, remove dups

	
	Extend projection with arithmetic

	NULL
	Outer joins pad columns with NULLs for tuples that don’t join

	
	o⋈o: full, o⋈: left, ⋈o: right

	
	Left return all tuples from left table, some from right

	Functional Dependency
	X(Y if attributes in set Y are determined by those in X

	
	Relation instance satisfies FD if
[image: image4.wmf]Y

t

Y

t

X

t

X

t

R

t

t

.

.

.

.

.

2

1

2

1

2

1

=

®

=

Î

"

	
	F+ is the set of FDs logically implied by F (closure)

	Armstrong’s Axioms
	Show how to construct the closure of a FD set

	
	Both sound and complete

	Reflexivity:
[image: image5.wmf])

(

Y

X

X

Y

®

®

Í

Augmentation:
[image: image6.wmf])

,

,

(

)

(

W

Y

W

X

Y

X

®

®

®

Transitivity:
[image: image7.wmf])

(

)

(

)

(

Z

X

Z

Y

Y

X

®

®

®

Ù

®

	They have these consequences:

Union:
[image: image8.wmf])

,

(

)

(

)

(

Z

Y

X

Z

X

Y

X

®

®

®

Ù

®

Pseud-trans:
[image: image9.wmf])

,

(

)

,

(

)

(

Z

W

X

Z

Y

W

Y

X

®

®

®

Ù

®

Decompose:
[image: image10.wmf])

(

)

(

)

(

Z

X

Y

Z

Y

X

®

®

Í

Ù

®

	Heaths Rule
	
[image: image11.wmf])

(

)

(

,

,

R

R

R

C

A

A

B

A

p

q

p

=

	Minimal Cover
	FD set is minimal if every FD has a single element Y, no FD can be removed without losing equality and no FDs X can be shrunk without losing equality

	Attribute Closure
	For X(Y, grow consequences of X, adding Y’ if X’(Y’ (F for X’ (X. Now F (X(Y iff Y (X+

	Candidate Key
	For R(A1:T1,…,An:Tn) with FDs F, X is a candidate key for R if X(A1,..,An (F+ and no proper subset of X is a candidate key

	De-composition
	A collection of (relation, query) pairs and Q0 so that the queries can retrieve the relation from R and Q0 can retrieve R from pairs

	
	{R1,…,Rk} is a lossless join decomposition wrt F if for all r satisfying F, πR1(r) ⋈...⋈ πRk(r) = r

	Dependency Preserving
	Projection of FD set F onto Z:

[image: image12.wmf]}

{

Z

Y

X

F

Y

X

F

z

Í

È

Ù

Î

®

=

+

	
	Decomposition {R1,…,Rk} dependency preserving if
[image: image13.wmf]+

È

È

=

+

)

...

(

1

Rk

R

F

F

F

	Normal Forms
	Prime attributes appear in candidate keys, superkeys are supersets of candidate keys

	First NF
	Domain of all attributes must be atomic (violated by e.g. table w/ student IDs list attribute)

	Second NF
	Partial FD X(Y if for some A(X, (X-{A})(Y (i.e. not minimal)

	
	Every non-prime attribute is not partially dependent on any key

	Third NF
	If for all X(A(F+ then either A(X, X is a superkey or A is a member of some candidate key

	BCNF
	If for all X(A(F+ then either A(X or X is a superkey: unlike 3NF it not necessarily possible

	Transaction
	Set of physical operations that form one logical operation

	ACID
	Atomicity: need log
Database consistency: every transaction sees consistent DB, follows from transaction AI+C

	Schedule
	List of actions from a set of transactions

	
	Well formed: schedule actions in same order as in transaction

	
	Complete: contains commit or abort action for all transactions

	
	Serial: actions of transactions not interleaved, used for proof

	WR Conflict
	T2 reads a database object modified by uncommitted T1

	RW Conflict
	T2 changes the value of an object read by in-progress T1

	WW Conflict
	T2 writes to object already written by in-progress T1

	S2PL
	Obtain shared S lock before reading, exclusive X lock before writing,released when complete, phases independent, commutative only needs shared lock if object not read back

	OLAP
	Historical database for analysis

	
	Mostly reads, optimize schema for query processing

	
	ROLAP: backed by relational DB

	
	MOLAP: multidimensional DB

	Data Cube
	Multidimensional representation of data, e.g. sales by dimensions product, date, country

	
	Can include aggregates in cube, e.g. sales sums at edges

	Data Warehouse
	Subject-oriented, integrated, time-variant, non-volatile

	Operations
	Roll up, drill down: move between high/low level summary

	
	Concept hierarchy navigation: all ((Europe ((Germany|Spain) | North America ((Mexico|..))

	Schema
	Star: fact table in the middle connected to dimension tables (e.g. store ID to name mapping)

	
	Constellation: dimensions tables normalised into further stars

	
	Cube: breaks relational model, possibly N-dimensional. Operators like sale(*,*,*): total sales, sale(c2,p2,*): sum of sales data for c2, p2 over time

_1241073223.unknown

_1241074054.unknown

_1241074105.unknown

_1241075105.unknown

_1241075173.unknown

_1241074273.unknown

_1241074076.unknown

_1241073829.unknown

_1241073956.unknown

_1241073736.unknown

_1241033558.unknown

_1241071474.unknown

_1241033336.unknown

