
Java Basics Call super-class constructors 
by making super(..) call 

 Arrays are covariant, so 
assignment may fail at runtime 

 Use “package” for namespace 
 “import” to bring in package 
 Default access modifier allows 

access by same class, package 
 Protected variables are 

accessible in the package they 
are defined in and within 
subclasses but only when 
accessed on instances of the 
subclass (i.e. super-class 
instances are not allowed) 

Modifiers “final” fields must be initialized 
by every code path that 
creates an instance 

 “strictfp” on classes, methods 
 “volatile” causes caching to 

not be permitted 
 “synchronized” locks on the 

class or object instance 
 “transient” on fields 
 “native” methods are 

implemented in native code 
Nested 
Classes 

Inner classes, static nested 
classes, nested interfaces, 
anonymous inner classes 

 Can access enclosing classes 
using EnclosingClass.this 

 

MVC Model(whatever), View(update), 
Controller(Model, View[], 
changeModel, addView) 

 Potential for cascading updates 
and computational overhead 

Singleton Singleton(static getInstance) 
Factory abstract Factory(build), 

MyFactory() : Factory 
 Ensures e.g. no MotifWindow with 

MacScrollBar (i.e. consistency) 
Adapter Implement target interface in 

terms of adaptee operations  
 Can use the adapter with any 

subclass of the adaptee 
Visitor Node(acceptVisitor), Visitor(apply) 
 The node applies the visitor to its 

data and then make its children 
accept the visitor 

 Methods implementing a 
particular operation are kept 
together in a sub-class of Visitor 

UML Triangle generalisation arrows 

point towards super-classes 
 Normal aggregation arrows point 

away from the aggregator 
 Dashed relationship arrows point 

from parent to child (e.g. 
MacFactory -> MacScrollBar) 

 

Reflection getClass(), getMethods(), 
getInterfaces(), getSuperclass(), 
newInstance(): 0-ary ctor used 

 Security manager 
“checkMemberAccess” must 
permit general access for 
Member.PUBLIC and 
“checkPackageAccess” must 
permit in-package reflection 

Serialization Object{Input/Output}Stream 
 “Serializable” marker interface 
 Can also implement 

readObject(ObjectOutputStream), 
writeObject(ObjectInputStream) 

 readResolve/writeReplace let you 
replace the object wholesale with 
a new one (poss. Implementing 
{read/write}Object itself!) 

 “Externalizable” interface lets you 
implement readExternal and 
writeExternal to totally serialize 
the object state: super-classes 
are not done by default! Also, the 
class is constructed before 
deserialization. This can be 
efficient in speed (no reflection) 
and size (total control) 

GUIs AWT: LCD, native controls 
 Swing: common, native theme 
 Events: AWTEvent, Listener and 

Adapter pattern for addXListener 
Garbage 
Collection 

Increased run time performance 
since cleanup occurs when idle 

 Stability for long running apps 
 No need to agree which module 

has deallocation responsibility 
 Programmer never thinks about 

memory allocation in the app! 
 Less control over footprint 
 More threads at run time? 
 Object reachable if referenced or 

still needs to be finalized 
 References can be restored by a 

finalizer, but will only be run 
once, and there is no control over 
their thread or execution order 

 {Soft, Weak, Phantom}Reference 



can be associated with a queue 
 Soft references MAY be cleared 

by a GC if the object dies 
(depends on timestamp etc) 

 Weak references WILL be cleared 
by a GC if the object dies 

 Phantom references are 
enqueued after finalisation has 
run and can be used for cleaning 
up native resources (via subclass) 

Class 
Loaders 

Test whether class is loaded, 
delegate to parent class loader 
and then findClass to actually 
load the bytes to defineClass 

 Types are identified by <Loader, 
Fully Qualified Name>: this can 
be used to host separate 
applications within on JVM! 

 

Threading Only get InterruptedException on 
blocking calls such as sleep, wait 

 Otherwise check for interrupt 
using Thread.isInterrupted() 

 Can explicitly yield 
Problems Liveness: deadlock, livelock, 

starvation, missed wake-up 
 Field accesses are atomic only to 

32 bits (long, double = danger) 
 Priority inversion can be 

alleviated with priority inheritance 
where locks have a priority = the 
maximum priority of a requestor 
that the holder of the lock is 
boosted up to, now get push-
through blocking of other threads 
by the boosted thread! 

Deadlock Requirements: resource request 
can be refused, resources are 
held while waiting, no resource 
preemption allowed, circular wait 

 Detect by looking for cycles in 
object allocation graphs (in which 
you have thread and resources, 
arrows between the two sets 
show requests and holdings) 

 Given allocations Ai,j and requests 
Ri,j thread i and resource j with 
working vector W of currently 
available objects 

1. Find an unmarked thread 
whose requests Ri can be 
met. If one does not exist, 
terminate 

2. Set W = W + Ai, mark the 

thread and repeat 
If some thread is unmarked then 
deadlock has occurred 

Condition 
Variables 

wait(), notify(), notifyAll(): must 
hold the associated lock 

Locking Implement by means of a 
“locking protocol” class 

 MRSW: reader count,FCFS: ticket 
 CAS/TAS w/ resume queue good 
 Semaphores: P decrements and 

blocks if the result is < 0, V 
increments and if the result is <= 
unblock a blocked thread 

 Event count: has event number, 
increased by advance(), got by 
read() and has await(i) 

 Sequencer: supports only ticket() 
which increments value by one 
and returns the old value 

 Monitor: ADT where mutual 
exclusion is enforced between 
invocations of its operations 

 Active Object: has conceptual 
mutual exclusion by performing 
operations on a dedicated thread 

 

Distributed 
Systems 

Problems: parallel execution, 
communication delayed, 
independent failure, no clock 

Naming Identify resources to access via 
late binding of names 

 Unique IDs: allocation easy but 
centralised. What about reuse? 

 Hierarchical namespace: local 
allocation following real world 
control delegation, has locality of 
access, but lookups complex  

 Pure name: contains no 
information about the object 

 Impure names: typically prevent 
the object from moving/changing 

 Name service can be enhanced 
with caching by clients/servers, 
replication, distribution 

 

Sockets UDP: loss, duplication, reordering 
but checksum and framing OK. 
Need to implement flow, 
congestion control, loss recovery 

 TCP: reliable, bidirectional, flow 
and congestion control OK. Need 
to implement framing, 
marshalling, 1-* communication 

 Java: Datagram{Socket, Packet}, 



ServerSocket, Socket 
RMI Server registers a reference to a 

remote object with the registry (a 
name service) and deposits 
associated .class files in a shared 
location (the RMI codebase) 

 Client queries the registry for a 
reference to the remote object 
and grabs code from the 
codebase if it is not locally 
available, then makes RMI calls 

 Requires own security and re-
registering at the application level  

 Parameters/results typically 
deep-copied over RMI, but 
objects implementing Remote are 
passed by reference 

 Our own remotable objects must 
extend Remote somehow, and 
such an interface must mark all 
methods with RemoteException 

 RMI creates one thread per 
incoming connection (prevents 
deadlock), then emulates locks 
when re-entrant calls are made 

 Retry semantics after timeout: 
at-most-once or “exactly” once 
(retry with same RPC id)..? 

 

Transactions Atomicity, consistency, isolation, 
durability: ACID test 

 Serializability: a concurrent 
execution that gives the same 
result as some serial execution 

 Can represent this as a “history 
graph”: a edge from a to b 
means that a happened before b 
(w/ transitivity). “Cycles” indicate 
non-serializable execution orders  

 Lost updates, dirty reads (before 
a commit), unrepeatable reads 

 Isolation: strict and non-strict 
(more concurrency but can have 
delays on commit waiting for 
transactions it dirty read from to 
commit, and cascading abort) 

2PL Acquire, release, do other 
operations during both phases 

 Can use application knowledge 
 Ensures serializable execution 
 Deadlock free with locking order 
 Can be complex to use 
 Has non-strict problems, use 

strict variant to solve (hold all 

locks until after commit) 
 Performance may be bad due to 

lock overhead and restrictiveness 
TSO Each transaction has a 

timestamp (e.g. start time). The 
timestamp will give a serializable 
order for the transactions (if two 
transactions access the same 
object they must do so according 
to their timestamp order) 

 Give each object a timestamp 
field, when it is accessed by a 
transaction check the timestamp: 
if transaction is later update the 
object else abort transaction 

 Abort decision is made with local 
information and simple to do 

 No locks may increase 
concurrency and is deadlock free 

 Requires rollback, some 
serializable orders are rejected, 
and cascading aborts are still 
possible if lower T aborts 

OCC Assumes that concurrent 
transactions rarely conflict and 
so only check serializability at 
commit time, using shadow 
copies so no cascades/slow abort 

 Assign start time timestamp to 
transaction: that of the last 
committed transaction. When 
taking shadow copies record the 
timestamp of the most recent 
transaction to update that object 
(stored in another table). When 
validating compare each 
shadows timestamp against the 
start time and if later abort. 
Then check against all 
transactions in the list after the 
start time with the changes the 
current transaction made: If we 
see a conflict then abort (this 
prevents lost updates). 

 

Logging Record details of updates to do 
in the log in (transaction, old, 
new) form with transaction 
control signals (start, abort, 
commit) as well 

 Only write to actual memory 
once we are sure we have the 
change logged as well 

 Make checkpoints where log 



records are forced out to non-
volatile storage: will now only 
consider transactions ending 
after the checkpoint on crash, 
have to REDO transactions that 
had committed before crash and 
UNDO those that were in 
progress before the crash 

 Can also implement this by 
allocating shadow objects in 
other parts of memory and then 
atomically flipping a pointer: 
dead objects could reclaim lazily  

 

Generics Parameter types cannot be 
primitives or arrays 

 Type erasure  
 Static fields, methods are shared 

between generic instances: thus 
cannot refer to the type 
parameter in e.g. initializers 

 Wildcards let you operate on a T 
of “anythings”: T<?>. Cannot 
now call T.method that takes a ? 
since we don’t know what type is 
required, but can consume a ? 
(common superclass Object). 
Can create T<?>[] somehow.. 

 Have bounded types: <S extends 
T>, <S super T> 

 <S super T> S A<T>.doStuff() is 
a compile time error due to type 
inference limitations 

 Can use Class<T> 
newInstance() to get static 
typing, good for the exam! 

 

Black Box Try all possible inputs / outputs 
and validate they are correct 

 Can get full coverage 
 Impossible, esp. stateful progs. 
 Boundary value analysis checks 

inputs in pathological cases only 
White Box Examine structure of the code 

and try patterns so as to exercise 
every reasonable code path 

 Might get closer to full coverage 
than with black box testing 

 Takes advantage of the 
knowledge of internals to avoid 
pointlessly similar test cases 

 Number of unique paths is vast 
 A bug might be that a path is 

missing: check vs. the spec. 

Code 
Inspection 

Group exercise with 
programmer, spec-writer, test 
engineer, moderator 

 Check code against common 
error checklist (e.g. fencepost) 

 Teaches programmers to think 
critically and shares expertise 

 Walkthrough: testing done via a 
small number of test cases, 
participants trace the execution 

Coverage Statement: execute each 
statement just once, doesn’t test 
control paths at all! 

 Decision: demonstrate true/false 
at each choice point (includes 
looping): what about multi-way 
branching or zero decisions? 

 Condition: at each branch each 
Boolean variable should take on 
both true and false at least once 
in the test cases: fails to explore 
some branches of the code 

 Decision-Condition: requires 
sufficient test cases to explore all 
branches and all assignments of 
Boolean variables in conditions: 
what about shortcut evaluation? 

 Multiple-Condition: requires test 
cases are not weakened by 
shortcut evaluation (= more test) 

Equivalence 
Partitioning 

Good test cases reduce by more 
than 1 the number of other cases 
that must be written and give 
information about a range of 
input: reduce inputs into 
equivalence classes that will find 
the same bugs 

 From the spec determine 
valid/invalid input equivalence 
classes then write tests to cover 
as many of the valid input 
equivalence classes as possible 
at once and tests to find exactly 
one of the invalid input 
equivalence classes 

Other Tests Facility, volume, stress, usability, 
security, performance, storage, 
configuration, compatibility, 
installability, reliability, recovery, 
serviceability, documentation, 
procedure, acceptance 

 


