
Characteristics Clarity, orthogonality,
abstraction, verification,
IDEs, portability, “cost”

Fortran
First high level PL to be widely used: efficient
Storage allocated statically
Flat register machine: no stacks, no recursion
Types: numeric, boolean, arrays (fixed len.),
strings (fixed len.), files
GOTOs in 66, 77 added control structures
Columns relevant due to punch card origins
Implicit types (int for “I”-“L”, real otherwise)
Static types, but cannot check calls args. and
COMMON block due to separate compilation:
these also left unchecked at runtime
COMMON blocks: named shared storage block,
format re-declared in every program unit
All arguments by ref., hence allows assignment
to constants (cannot statically check for this)

LISP
Motivating application: automated reasoning
Expression based, has a pure subset
Prefix style syntax for ease of parsing
Compute with atoms and cells (leaves and
binary tree branches): make S-expressions
Dynamically typed and scoped
Abstract machine has LISP expression,
continuation, association list, heap (cons cells)
Programs as data, “eval”, e.g. lazy evaluation
with quoting on arguments and explicit “eval”

ALGOL
Block structure, colon-separated statements
Functions, procedures, recursion
Supports call by name, but bad w/ side effects
Static typing, but automatic type conversions
not fully specified, type of procedure param. to
a procedure (proc) does not include its param.
types, array param. does not have bounds
Types primitive or compound (array, structure,
procedure, set, pointer)

Pascal
Rich set of data structuring concepts
(enumerations, subranges, records, variant
records, sets, sequential files)
Index checking (array range part of type)
The use of restricted types for procedure
parameters simplified compilation

BCPL
One data type: the bit pattern

Abstract machine was a store: numbered
storage cells, each holding a bit pattern
Distinguishes between conceptual and internal
types (which model the concepts)
Has recursion, but FVs of proc. must be global
Has a “global vector” allowing separately
compiled modules to reference each other
Call by value, but since arrays are referenced
by the address (@) of the base element, they
end up being passed by reference
Static, implicit typing, but there is only one

internal data type, so this means nothing

SIMULA
Developed for writing simulations
Extension of ALGOL 60 with classes, reference
variables, pass by reference, coroutines
Classes: procedures returning a pointer to a
new value of its activation record
Objects: activation records produced by call to
a class (i.e. objects are closures)
Inheritance defined by class prefixing,
including the ability to redefine parts of a class
Type switching (inspect), safe casting (qua, :-)

Has if B <: A then (B Ref) <: (A Ref):

this is a type loophole!

Smalltalk
Motivating application: Dynabook
Execution model: everything is an object,
messages to communicate between them
Selector: messae name
Message: selector + actual param. values
Methods are public, instance vars protected
“self” always refers to the object that contains
this method, directly or by inheritance!
Type of an object is its interface

ML
Designed for theorem proving
Modules: ADTs, with structures and signatures
Functors: structure that takes other structures
as parameters, programs can be combined in
different ways (separate algorithm, structure?)

Java/C#
Boxing
Delegates vs. anonymous inner classes
Type loophole = security loophole if untrusted
code is downloaded from the web
C# generics not compiled away, allow value
type instantiations but no wildcards
Iterators (mimicking functional streams)
LINQ, lambdas, type inference

Constructs Expression: syntactic entity
that evaluates to a value

 Statement: command that
alters machine state

Parameters Formal: names used in a
declaration

 Actual: expressions/values
 Name association, defaults
Scoping Static/lexical: variable

bound to closest lexical one
Easier to understand, can
do static analysis (and
hence optimisation etc)

 Dynamic: variable bound to
most recent declaration!

Garbage
Collection

Reclamation of memory
locations not accessible to
a program

Evaluation
Order

Call by value: reduce
arguments to values first

 Call by name: execute
body, reducing arguments
to values if necessary

Parameter
Passing

Pass by value: value of
actual parameter copied
into function

 Pass by reference: actual
parameters L-value is
copied into function

 Aliasing: when two names
refer to the same location

Block Structure Organise a program as
nested blocks

 May include nested
procedures that reference
local declarations

Object
Orientation

Dynamic lookup: method is
selected directly based on
message sent to an object.
Means that different
objects can respond to the
same message differently

 Abstraction: hide
implementation details

 Subtyping: relation on
types that allows value of
one type to be used in
place of values of another.
Allows functionality to be
added without modifying
general system parts

 Inheritance: reuse the
definition of another object

to define another object
Types Name, organize concepts
 Ensure bit sequences are

interpreted consistently
 Provide information to the

compiler about prog. data
 Type systems are strong iff

only accept safe phrases
 Static or dynamic typing
 Explicit or implicit typing
 How expressive is it?
Type
Declarations

Transparent: alternative
type name (“type”)

 Opaque: new type name
!= to another (“newtype”)

Polymorphism Constructs that take on
different types as needed

 Parametric, ad-hoc /
overloading, subtyping

