
Counsel Of Despair

Vision is inverse graphics in that it tries to invert the 3D to
2D projection. Unfortunately this is, strictly, mathematically
impossible. Most computer vision problems are not well posed
in that:

• No solution necessarily exists

• Solutions are not necessarily unique

• Solutions may not depend continuously on the data

Technology

Spatial resolution is determined by density of CCD array ele-
ments and lens properties. Luminance resolution, the number
of distinguishable grey levels, is determined by the number of
bits per pixel resolved by the digitizer and the SNR of the CCD
array.

Frame-grabbers discretize video signals into byte streams.

Biological Visual Mechanisms

Typically neurobiological visual principles inform approaches to
machine vision.

Neural activity is fundamentally asynchronous and it is rarely
possible to distinguish processing from communication.

The eye consists of 120 million photo-receptors, of which 6 mil-
lion are cones, arranged in regular hexagonal lattices. Signal
flows in the eye occur both longitudinally and laterally. Despite
the number of inputs, there are only 1 million “output channels”
via the optic nerve, so considerable preprocessing occurs before
the brain, which may be summarized as:

• Image sampling by photo-receptors

• Center-surround comparisons implemented by bipolar cells

• Temporal differentiation by amacrine cells

• Separate coding of sustained versus transient image infor-
mation by different ganglion cells

• Initial colour separation by opponent processing channels

Neurons in the retina can be considered as linear operators or
filters, and their behaviour fully understood. The signal flow
travels along the optic nerve, splits at the optic chiasm and
go via the thalmus. This “relay station” receives 3 times as
many efferent fibres from the cortex as it emits afferent fibres
from the eyes. Ocular dominance columns attempt to integrate
the signals from the two eyes in a way suitable for stereoscopic

vision, while simultaneously using orientation columns to detect
structures with preferred orientations.

The retina-based receptive fields of neurons are determined ex-
perimentally, and enjoy 5 degrees of freedom:

• Position of the field, horizontally and vertically

• Size of the field

• Orientation of excitatory/inhibitory boundaries

• Phase of the receptive field

The fields may be closely described as Gabor wavelets.

The representation of the retina in the brain is retinatopic (ad-
jacent points in the retina project to adjacent points in a corti-
cal map) but there is a distortion to magnification of the fovea
by the cortical magnification factor. It has been proposed that
this accomplishes a log-polar projection for scale and rotation
invariance.

Mathematical Operations

Any image can be represented by a linear combination of basis
functions by f(x, y) =

∑
k akΨk(x, y). In the case of Fourier,

Ψk(x, y) = ei(µkx+νky) where ν andµ are vector spatial fre-
quencies that may be resolved into polar coordinates as ω =√
µ2 + ν2 and φ = tan−1( νµ ). The coefficients ak are computed

as the orthonormal projection of the entire image into the conju-
gate Fourier component: ak =

´
X

´
Y
e−i(µkx+νky)f(x, y)dxdy.

Shift theorem: f(x − α, y − β) ↔ F (µ, ν)e−i(αµ+βν), giving
translation invariance for the power spectrum of isolated pat-
terns

Similarity theorem: f(αx, βy)↔ 1
|αβ|F (µα ,

ν
β )

Rotation theorem: f(xcos(θ) + ysin(θ),−xsin(θ) + ycos(θ))↔
F (µcos(θ) + νsin(θ),−µsin(θ) + νcos(θ)), so if we work
with our Fourier domain (µ, ν) in log-polar space (r =
log(

√
µ2 + ν2), θ = tan−1( νµ )) then size change becomes trans-

lation along r and rotation becomes translation along θ, and we
can make these immaterial by considering the power spectrum.

Convolution theorem: if h(x, y) =
´
α

´
β
f(α, β)g(x − α, y −

β)dαdβ then H(µ, ν) = F (µ, ν)G(µ, ν), giving an efficient way
to compute Fourier expressions after the application of filtering

Differentiation theorem:
(
d
dx

)m ( d
dy

)n
f(x, y) ↔

(iµ)m(iν)nF (µ, ν) so in particular ∇2f(x, y) ↔ −(µ2 +
ν2)F (µ, ν) - notice that this emphasises high frequencies and
discards the DC part
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Edge Detection

This information is useful as:

• Edges demarcate boundaries and parts of objects

• Occlusion edges reveal the geometry of the scene

• Edges may appear in more abstract domains than lumi-
nance

• Velocity fields may be understood as the movement of
edges

• Aligning edges can be used to solve the correspondence
problem effectively

You can find this information computationally by convolving
with

[
−1 1

]
and finding large amplitude or

[
1 −2 1

]
and looking for zero crossings. In two dimensions either di-
rectional or non-directional derivatives may be employed. An
example discrete isotropic operator is the Laplacian:

-1 -2 -1
-2 12 -2
-1 -2 -1

Operators which sum to 0 are known as filters as they are in-
sensitive to the overall brightness of a scene.

Logan’s theorem says that for 1D signals that are band-limited
to at most one octave and have no complex zeroes in common
with their Hilbert transforms you are able to recover the signal
from just its zero-crossings.

Multi-scale Analysis

Multi-scale analysis may be used with edge detection as non-
redundant structure typically exists in images at all scales.
Marr proposed that the image be convolved with a multi-scale
family of isotropic blurred second derivative filters, retaining
only their zero-crossings. This can be concretely implemented
by the operator ∇2 [Gσ(x, y) ? I(x, y)] = Gσ(x, y)?∇2I(x, y) =[
∇2Gσ(x, y)

]
? I(x, y) (with the last being the preferred ver-

sion).

The Gaussian-Laplacian approach tends to be very noise-
sensitive, and more sophisticated non-linear detectors have been
developed. Furthermore, it is not clear how to generalize the
constraint of one-octave band-limiting to 2D signals, and the
zeroes of a 2D signal are not countable.

Causality is the property that edges at lower resolutions must be
caused by edges in the underlying data, and are not artifacts
of the blurring process. Fingerprint theorems show that the
Gaussian blurring operator uniquely possesses this property.

A plot showing the evolution of zero-crossings in the image after
convolution with a linear operator as a function of the scale of
that operator is called scale-space. A mapping of the edges in
an image is called a scale-space fingerprint.

Models

Active contours are one expression of a model-fitting approach
that relies jointly on a data term (model-input similarity) and
a cost term (model complexity). Iterative numerical methods
(regularization methods) exist that optimize a functional that is
a linear combination of the two terms: argminm

´
((M − I)2 +

λ(Mxx)2)dx.

The family of filters that uniquely achieve the lowest possi-
ble conjoin uncertainly in both space and Fourier domains

are Gabor wavelets: f(x) = e−iµ0(x−x0)e−
(x−x0)2

α2 , F (x) =
e−ix0(µ−µ0)e−(µ−µ0)2α2

. Such functions are non-orthogonal and
hence the coefficients are hard to obtain. When they are
parametrized to be self-similar (dilates and translates of each
other) they constitute a wavelet basis, e.g. Ψmpqθ(x, y) =
2−2mΨ(2−m(x cos(θ)+y sin(θ))−p, 2−m(−x sin(θ)+y cos(θ))−
q).

By taking the modulus of a facial image after convolution with
complex-valued 2D Gabor wavelets key features may be de-
tected: this is known as a quadrature demodulator network.

Texture

Texture is a cue to surface shape and image segmentation. It is
defined by the existence of certain statistical correlations across
the image, with an underlying notion of quasi-periodicity.

The detection of periodicity is best done by Fourier methods.
However, the usual exponential eigenfunctions are globally de-
fined so in order to recover local information you typically “win-
dow” the sinusoids. The optimal set of windowing functions
are Gaussians due to their optimal spatial/spectral localiza-
tion. Hence the final basis used is 2D Gabor wavelets. Edge
detection on the modulus of the Gabor coefficients can detect
textured regions.

Colour is difficult to recover because wavelengths received de-
pend as much on the illuminant as upon the spectral re-
flectances of the surface. Since R(λ) = I(λ)O(λ), some have
proposed searching for specular regions in the image where re-
flected light would be a faithful estimate for I(λ). A more
robust approach is Retinex, which works on the basis that the
colors of object or areas in a scene are determined by their sur-
rounding spatial context. A sequence of ratios computed across
object boundaries enables the illuminant to be algebraically dis-
counted.

Correspondence And Motion

Stereoscope disparity results in the images from the left and
right eyes differing. Making use of this disparity to infer depth
is called the correspondence problem.
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Current algorithms for determining correspondence require
large searches for matching features under a large number of
permutations. A multi-scale image pyramid can be used to
guide this search at successively finer scales to improve effi-
ciency. Once feature correlation has been found, d = fb

α+β where
f is the camera focal length, b is the base of triangulation and
α and β are the disparities of the projections of the object in
the two images relative to the respective optical axis.

For motion vision we need to solve the correspondence problem
for two images coincident in space but acquired with a temporal
displacement. Requirements include the need to infer 3D tra-
jectories, make local velocity estimations, disambiguate object
from contour motion and assign more than one velocity vector
to a given region!

Intensity gradient models assume time derivative is related
to local spatial gradients due to velocity v̄: − δI(x,y,t)δt =
v̄ ~∇I(x, y, t)

Dynamic zero-crossing models measure velocity by finding
edges and contours and then applying the time derivative in
the vicinity of a zero crossing: − δ

δt (∇
2Gσ(x, y) ? I(x, y, t))

Spatio-temporal correlation models detect motion by observing
the most likely correlation between the time-separated images,
realized as a pair of coordinates from which the velocity can
be calculated. This has been supported somewhat by biological
investigation of the visual system of the fly.

Spatio-temporal spectral models detect and measure mo-
tion purely by Fourier means, exploiting the fact that
motion creates a covariance in the spatial and tempo-
ral spectra of the image I(x, y, t) where F (ωx, ωy, ωz) =´
X

´
Y

´
T
I(x, y, t)e−i(ωxx+ωyy+ωtt)dxdydt. Motion detection

occurs by filtering the image sequence in space and time and
observing that tuned spatio-temporal filters whose center fre-
quencies are co-planar in this space are activated together.
This is a consequence of the spectral co-planarity theorem,
which says that since I(x, y, t) = I(x − vxto, y − vyt0, t − t0),
F (ωx, ωy, ωt) 6= 0 iff ωxvx +ωyvy +ωt = 0. The spherical coor-
dinates of the normal of the plane correspond to the speed and
direction of motion.

Surfaces

Albedo of a surface is the fraction of the illuminant that is
re-emitted from the surface in all directions.

Lambertian surfaces are pure matte, i.e. have no specular com-
ponent.

Specular surfaces are locally mirror-like and obey Snell’s law.

The reflectance map is a function φ(i, e, g) where i is the illumi-
nant angle, e is the reflected angle and g is the angle between
the two that specifies the fraction of incident light reflected per
unit surface area, per unit solid angle in the direction of the

camera. For Lambertian surfaces, φ(i, e, g) = cos(i). For Lu-
nar surfaces, φ(i, e, g) = cos(i)

cos(e) . For specular surfaces φ(i, e.g) ={
1 g = i+ e

0 g 6= i+ e
. Typical surfaces are a blend and are governed

by φ(i.e.g) = s(n+1)(2 cos(i) cos(e)−cos(g))n)
2 +(1−s) cos(i), where s

is the fraction of light emitted specularly and n is the sharpness
of the specular peak.

Shape Description

Cues to surface shape are texture, colour, stereo, motion and
shading information. However, it is an inherently ill-posed
problem as many ambiguous factors have to be resolved, such
as surface reflectance, geometry, material and illuminant geom-
etry.

Closed boundary contours can be represented by their curva-
ture map: θ(s) = lim∆s→0

1
r(s) where r(s) is the limiting radius

of a circle that best fits the contour at position s and ∆s is the
arc length. This is position and orientation independent, scales
easily and represents mirror symmetry by a sign change. Ad-
ditionally, these maps can be expanded with basis functions.to
generate a description which is rotation, translation and dila-
tion invariant. Grammars of such invariant shapes are called
codon libraries.

The 2.5-dimensional sketch is a 2-dimensional image with sur-
face normals assigned to each point in the image domain.

Solids can also be represented as the unions and intersections of
generalized superquadric objects which are defined by equations
of the form Axα + Byβ + Czγ = R. This allows volumetric
descriptions of the objects in a scene by just giving a list of 3D
parameters and relations.

Deformable parametric models fit human recognisable parame-
ters to the models for the purposes of lossy coding or customiza-
tion of an avatar.

Perceptual Psychology

Recent developments include the idea of a process grammar
which models objects and shapes in terms of their morphogen-
esis.

Percepts can be considered as hypotheses: top-down interpre-
tations that depend greatly on contexts, expectations and other
extraneous factors beyond the stimulus.

Agnosias are failures of recognition that result from brain in-
jury. They include things such as the loss of ability to recognise
faces but no other objects, loss of colour vision, loss of ability
to see in 3D and the inability to simultaneously see more than
one thing.
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Bayesian Analysis

Bayesian statistics provide a means for integrating prior in-
formation with empirical information gathered from incoming
data. This is especially relevant in computer vision, where there
are many sources of uncertainty. The governing equation is
p(H|D) = p(D|H)p(H)

p(D) , with the old posterior iteratively becom-
ing the new prior.

Statistical decision theory describes a decision environment that
recognises similarity between “different” patterns and differ-
ences between “similar” patterns:

Actually Same Decision “Same”
Hit

√ √

Miss
√

×
False Alarm ×

√

Correct Reject × ×

The criterion for similarity should be set so as to minimize the
expected cost of errors. If both types of errors have the same
cost then this will be where this causes the area under the prob-
ability density curves to be equal. You can derive a Receiver
Operating Characteristic which plots the hit rate against the
false alarm rate for a range of thresholds.

The decidability of the signal detection task is defined as
d′ = |µ2−µ1|√

1
2 (σ2

2+σ2
1)

where µi and σi are the characteristics of the

respective distributions.

Bayesian classifiers take into account the prior probabilities of
the possible classifications. The minimum misclassification cri-
terion is that ∀j 6= k.P (x|Ck)P (Ck) > P (x|Cj)P (Cj) where Ci
is class i. This can be satisfied by assigning an x to the class
with the highest posterior probability. However, in situations
where error costs differ this misclassification criterion may not
be appropriate.

Discriminant functions are functions yk(x) associated with each
class Ck such that an observation x is assigned to that class iff
∀j 6= k.yk(x) > yj(x). Decision boundaries between regions are
defined by those loci where yk(x) = yj(x).

Face Detection

The central issue in pattern recognition is the relation be-
tween within-class and between-class variability. Often there is
greater variability in the code for a given face across changes in
the illuminant, angle or expression than for different faces with
these factors constant, which leads to real-world error rates ap-
proaching 50%.

For face detection, identification and expression interpretation
for the problem of identifying distinct expressions, within-class
variability is desirable and between-class variability undesir-
able. Conversely, for interpreting expressions in the classes of

same/different faces, within class variability is desirable and
between class variability undesirable.

Face detection is a harder problem than face recognition and
current leading approaches rely just on skin hue!

Template-matching face recognition algorithms store an array
of size-invariant pictures of faces in a number of pose angles
and match on a pixel-by-pixel basis.

Eigenfaces work with a Karhunen-Loeve Transform of a large
database of faces to define all faces as linear combinations of
the “most likely” face basis functions. It is limited since many
of the principle components just extract shading variations and
lack invariance to illumination, pose angle and size!

Wavelets can be used for face recognition as due to their lo-
calization they can track changes in facial expression in a local
way: faces are a kind of texture! To allow for deformations as-
sociated with changes in pose angle or expression, these “Gabor
jets” are placed on a deformable graph that tolerates distor-
tions relative to fiducial points, but performance is comparable
to that of Eigenfaces.

Focus today is on modelling faces as three-dimensional objects
and fitting these models to the percepts.

Motion energy models can be used to extract motion signatures
from parts of faces and classify these as expressions.
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