
Little’s Result

For a time period [0, t), let α(t) be the number of arrivals δ(t)
be the number of departures, N(t) = α(t)− δ(t) the number in
the system at t and γ(t) be the difference in area between α(t)
and δ(t). Now λ(t) = α(t)

t is the average arrival rate, T (t) =
γ(t)
α(t) the average system time per customer and N(t) = γ(t)

t

the average number of customers in the system. Now N(t) ≡
λ(t)T (t). If λ = limt→∞ λ(t) and T = limt→∞ T (t) then N =
limt→∞N(t) = λT .

Probability

The nth central moment is E((X − E(X))n) =
´∞
−∞(x −

E(X))nfX(x)dx.

The coefficient of variation is Cx = σx
E(X) .

The central limit theorem states that for a sequence Xiof inde-
pendent, identically distributed random variables with mean µ
and variance σ2, limn→∞ P

(P
(Xi−µ)√
nσ

< x
)

= Φ(x)

Statistics

The sample mean is X̄ = 1
n

∑n
i=1Xi.

The mean squared error is E((X̄ − µ)2) = σ2

n .

The sample variance is S2 =
Pn
i=1(Xi−X̄)2

n−1 .

If we write zα for the value such that P(Z > zα) = α where Z
is distributed N(0, 1). It follows that P(−zα/2 < Z < zα/2) =

1−α so by the CLT P
(
X̄ − zα/2 Sn < µ < X̄ + zα/2

S√
n

)
≈ 1−α

i.e. X̄ ± zα/2S√
n

is a 100(1−α) percent confidence interval for µ.

If the common distribution of the Xi are themselves N(0, 1)
then

√
n (X̄−µ)

S has Student’s t-distribution with n − 1 degrees
of freedom. Unlike confidence intervals this does not require n
to be large.

If we have n independent random variables Yi and we wish to
test that for some pi, P(Yj = i) = pi for Nibeing the number
of Yj equal to i we would expect that E(Ni) = npi (since Ni ∼
Binom(n, pi)) and we would reject the null hypothesis when t =∑k
i=1

(Ni−npi)2
npi

, a normalized distance of N from expectation,
is too large. For T ∼ χ2(k − 1), we reject the hypothesis when
P(T > t) < 0.05.

The Kolmogorov-Smirnov test lets us see whether n indepen-
dent random variables Yi arise from a common continuous dis-
tribution F (x). We construct Fe(x) = No of i such that Yi≤x

n and
expect D = maxx|Fe(x)− F (x)| to be small.

For iid X1 and X2, we obtain a reduced variance for X1+X2
2

when Cov(X1, X2) < 0. Such variables are called antithetic.

If we wish to estimate µX = E(X) but know µY = E(Y) from
the same output, Z = X + c(Y − µY) is also an estimator for
µX and for c∗ = −Cov(X,Y)

V ar(Y) V ar(Z) = V ar(X) − Cov(X,Y)2

V ar(Y) ≤
V ar(X). Such a Y is called a control variate.

Distributions

For Exp(λ), fX(x) =

{
λe−λx x > 0
0 x ≤ 0

, µX = 1
λ , σ

2
X = 1

λ2 .

This is the only continuous distribution with the memoryless
property, P(X > t+ s|X > t) = P (X > s).

For Γ(n, λ), fX(x) =

{
λe−λx

(λx)n−1

(n−1)! x > 0
0 x ≤ 0

, µX = n
λ ,σ

2
X =

n
λ2 . The sum of n independent Exp(λ) variables has a Γ(n, λ)
distribution.

For N(µ, σ2), fX(x) = 1√
2πσ

e−
(x−µ)2

2σ2 .

For Binom(n, p), P(X = x) =
(
n
x

)
px(1 − p)n−x for 0 ≤ x ≤ n,

µX = np, σ2 = np(1− p).

For Poisson(λ), P(X = i) = e−λ λ
i

i! for i ≥ 0, µx = σ2
X = λ.

This is a good approximation to the binomial distribution for
large n and small p where λ = np.

For Geometric(p), P(X = n) = p(1− p)n−1 for n ≥ 1, µX = 1
p ,

σ2
X = 1−p

p2 . In this definition the number of trials includes the
first successful trial.

Poisson Process

We say g(h) = o(h) if limh→0
g(h)
h = 0.

Let N(t) be the number of events that occur in the interval
[0, t]. For a Poisson process with rate λ N(0) = 0, the number
of events in disjoint time intervals are independent and the dis-
tribution of the number of events in an interval depends only

on its length and P (N(h) = i) =

1− λh+ o(h) i = 0
λh+ o(h) i = 1
o(h) i ≥ 2

.

If we consider dividing the interval of length t into n inter-
vals of length h = n

t . A sub-interval contains a single event
with probability approximately λ tn so the number of such
sub-intervals is Binom(n, λ tn). Letting n → ∞ shows that
P(N(t) = i) = P(Poisson(λt) = i).

Consider a sequence Xi of inter-arrival times between events in
a Poisson process of rate λ. Since P(X1 > t) = P(N(t) = 0) =
e−λt so X1 has an Exp(λ) distribution. Now:

P(Xi+1 > t|Xi = s) = P(0 events in (s, s+ t]|Xi = s)
= P(0 events in (s, s+ t])
= e−λt

1

So inductively inter-arrival times are distributed Exp(λ). Fur-
thermore Sn =

∑n
j=1Xi has a Γ(n, λ) distribution.

Simulation Techniques

Multiplicative congruential: Xn = (aXn−1)modm for a ∈ N,
m ∈ N. Choose the numbers to maximise the period of Xi.

Mixed congruential/linear congruential: Xn = (aXn−1 +
c)modm with a, m as above.

Discrete inverse transform: given U distributed
U(0, 1) and target distribution xi, P(X = xi) =
P
(∑i−1

j=0 pj ≤ U <
∑i
j=0 pj

)
= pi.

Geometric inverse transform: since
∑i−1
j=1 pj = 1 − P(X > i −

1) = 1− (1− p)i−1, X =
⌊
log(U)
log(1−p)

⌋
+ 1.

Poisson inverse transform: since pi+1 = λ
i+1pi, p0 = e−λ can

iteratively find an i which satisfies the criteria.

Continuous inverse transform: given U distributed U(0, 1) and
target distribution X, X = F−1

X (U) and U = FX(X) since:

P(X ≤ x) = P(F−1
X (U) ≤ x)

= P(FX(F−1
X (U)) ≤ FX(x))

= P(U ≤ FX(x))
= FX(x)

Uniform inverse transform: X = (x− a)U + a.

Exponential inverse transform: X = − 1
λ log(U).

Poisson inverse transform alternative: X =
argminn(

∏n
i=1 Ui < e−λ)− 1.

Queueing Systems

Kendall notation: A/B/m/k/l where A is an inter-arrival time
distribution, B is a service time distribution, m is the number
of parallel servers, k is the limit of customers in the system
(NOT the queues) and l is the population size.

Queuing networks are queues connected together. They can be
closed (fixed set of jobs circulate) and open (jobs may enter and
leave). Open networks are feed-forward if they visit each server
at most once.

Can have discrete state/time or continuous state/time simula-
tions. Simulations are very general but they can be time con-
suming to design, code and debug, may be complex and obscure
understanding, could be computationally intensive and can hin-
der statistical analysis of the output (e.g. how long should we
run the simulation before averaging?).

Events are time-labelled. The simulator picks the event with
the lowest available timestamp to execute next. We can attempt
to reduce error by running the simulation for longer and by
running the same simulation with a number of different pseudo-
random number sequences.

Utilization is the proportion of time that a server is busy.

Queue length can be obtained by estimating the queue length
distribution and finding the mean and by viewing queue length
as a function of time and finding its average.

Queueing time can be obtained by using Little’s law or by find-
ing the average observed queue times.

Multiple simulation runs are called replications. Each replica-
tion requires re-stabilising the simulation so we can break a
simulation run up into large blocks (with low inter-block cor-
relation) to obtain more samples. We can do subsequent runs
with the antithetic variables U and 1− U to reduce variance.

Stochastic processes are collections of random variables X(t)
that take values in a state space S indexed by times T . A
sample path is an observed set of values X(t). Processes may
be discrete-state (when S is countable) or discrete-time (when
T is countable).

Markov processes are stochastic processes that obey the Markov
property P(X(t) ∈ An+1|∀i ≤ n.X(ti) ∈ Ai) = P(X(t) ∈
An+1|X(tn) ∈ An).

Birth-death processes are Markov processes in which transi-
tions are only allowed between neighbouring states. Typically,

if Xn = i then Xn+1 =

{
i+ 1 birth
i− 1 death

. The birth and deaths

rate in i respectively are λi and µi. The Chapman-Kolmogorov
equations capture their behaviour:

dPi(t)
dt

=

{
−(λi + µi)Pi(t) + µi+1Pi+1(t) + λi−1Pi−1(t) i 6= 0
−λ0P0(t) + µ1P1(t) i = 0

Systems reach equilibrium iff ∀i. limt→∞ Pi(t) = pi exists. The
stationary solution occurs when dPi(t)

dt = 0. The global balance
equation states that for i ≥ 1, pi−1λi−1+pi+1µi+1 = piλi+piµi.
The detailed balance equations state that for i ≥ 0, piλi =
pi+1µi+1 and for i ≥ 1, piµi = pi−1λi−1. Hence for k ≥ 1
pk = pi

∏k−1
i=0

λi
µi+1

.

For the M/M/1 queue we can derive that if ρ = λ
µ , pk = (1 −

ρ)ρk. Hence E(N) = ρ
1−ρ and E(T) = 1

µ−λ .

For the M/M/m queue we have that where k is the queue

length, µk =

{
kµ 0 ≤ k ≤ m
mµ k > m

. For an equilibrium we require

λ
mµ < 1.

For the M/M/1/K queue we have p0 = 1−ρ
1−ρK+1 and for k ≤ K

pk = p0ρ
k.

2

For the M/M/1//N queue we have for 0 ≤ k ≤ N , λK =
(N − k)λ.

For the M/M/m/m queue (aka the m server loss system) we

have pm =
(
λ
µ

)m
1
m!

(∑m
k=0

(
λ
µ

)k
1
k!

)−1

which is known as Er-

lang’s formula.

We can have multistage birth processes, where r stages each
have exponentially distributed residence times with rate rλ:
the average time through the stages is 1

λ and the coefficient of
variation is 1√

r
.

For the M/G/1 queue service times are given by B(x) =
P(service time ≤ x). It does not have the Markov property,
but it is possible to pick out a discrete set of times where
the Markov property holds, such as the times ti where depar-
tures occur. The mean queuing time before receiving service
is E(Tq) = E(Nq) 1

µ + ρE(R) where E(Nq) is the average num-
ber of customers enqueued and E(R) is the average remain-
ing service time of the customer in service upon arrival. Re-
newal theory shows that E(R) = µE(S2)

2 where S is the service
time distribution. By Little’s law, E(Nq) = λE(Tq) so since
C2
S = E(S2)

E(S)2 − 1 for the distribution where E(S) = 1
µ it is true

that E(Tq) = ρ(1+C2
S)

2µ(1−ρ) .

Open Queueing Networks

We consider a class of open queuing networks called Jackson
networks. Customers arrive as a Poisson stream at server i
with rate γi. Each of the N servers has service time distributed
Exp(µi). Customers completing at node i move to node j with
probability qij . A job leaves the network with probability qi0 =
1−
∑N
j=1 qij : Q = (qij) is called the routing matrix. The system

state is (k1, k2, . . . , kN) where ki is the number of jobs at node
i.

The traffic equations are λi = γi +
∑N
j=1 λjqji. An equilib-

rium distribution exists iff ρi = λi
µi

< 1. The distribution is
p(k1, . . . kN) =

∏N
i=1 pi(ki) where pi(ki) is the equilibrium dis-

tribution for when there are ki jobs in an M/M/1 queue with
traffic intensity ρi.

Closed Queuing Networks

We can also consider closed queuing networks of this form with
a constant K jobs in the system. There are

(
K+N−1
N−1

)
states

in such a system: consider K + N − 1 boxes aligned in a row
and select N−1 of those boxes (which can be done in

(
K+N−1
N−1

)
ways). Place a “/” symbol in each of the boxes and a “1” in
all others. The boxes now represent an ordered partition of K
into N groups of “1” which are added together to give the ki
summands.

The traffic equations become λi =
∑N
j=1 λjqji. Anal-

ogously, p(k1, . . . kN) = 1
G

∏N
i=1 ri(ki) where G =∑

(k1,...,kN)∈S
∏N
i=1 ri(ki).

The Pollaczek-Khintchine formula applies to queuing systems
with a service time distribution E(S) = 1

µ (i.e. containing

M/G/1 queues). Since E(T) = E(Tq)+ 1
µ , E(N) = ρ+ ρ2(1+C2

S)
2(1−ρ) .

Building Models

Load testing is accurate but time consuming and expensive,
and a system must exist. Performance modelling is quick and
cheap, and can be applied at the design stage, but its accuracy
depends entirely on model representativeness.

Capacity planning methodology:

1. Characterise IT infrastructure to get infrastructure model

2. Characterise and test workload to get workload model

(a) Identify request classes

(b) Identify resources used by each class

(c) Measure service demand for each request class at each
resource

(d) Specify number of requests of each class that the sys-
tem will be exposed to

3. Model, validate and calibrate performance to obtain a per-
formance model and prediction

(a) Typically model resources and clients using queues,
nets, delay resources etc

Queuing networks are powerful for modelling contention and
scheduling strategies. Many efficient analysis techniques are
available. However, they are not suitable for modelling block-
ing, synchronization, simultaneous resource possession or soft-
ware contention.

Petri nets are suitable for qualitative and quantitative analy-
sis. They lend themselves to modelling blocking, synchroniza-
tion, simultaneous resource possession and software contention.
However, there are no direct means for modelling scheduling
strategies and fewer algorithms and tools available for analysing
them.

Queuing Petri nets can model everything mentioned and allow
the integration of hardware and software aspects. However,
analysis suffers from state-space explosion!

3

