
Eye 300dpi at 30cm
Color Classification
Munsell: hue, value, chroma, with standard
perceptual difference between colors
XYZ: three standard emission functions,
defined by CIE: human visible values leads to a
horseshoe in an x-y chromaticity diagram
Luv, Lab: perceptually uniform variants of XYZ
RGB: used in hardware, tiny triangle XYZ space
CMY: used in printers, invert RGB (absorption)
CMYK: add K because inks are not perfect
absorbers, so replace achromatic portion of
printed output with K
HSV, HLS: as Munsell, better for humans than
using RGB

CRTs Electron gun on phosphor screen
 Electromagnets to focus, deflect
 Can add a shadow mask and a

grid of differently colored
phosphors for color display

LCDs Two layers of liquid crystal: turn
off the twisting effect with a
voltage to blank pixel out

Plasma Voltage across electrodes ionizes
gas to give UV, excites phosphor

Printers Grayscale by halftoning (clumped
dot) / dithering (randomized dot)

 Color with multiple halftoned
screens: angle to prevent Moire

 More colors = larger gamut
Laser Charged drum selectively

discharged by laser, coated with
toner, pressed and cleaned

Inkjet Electrodes, bubbles, piezo
surfaces or electrical fields pull or
push ink onto a paper surface

Bresenham (integer end points, octant 1)
Dy = (y1 – y0); Dx = (x1 – x0);

y = x0; yf = 0; y = y0;

DRAW(x, y); while (x < x1) do {

 x++; yf += 2*Dy;

 if (yf > dx) { y++; yf -= 2*Dx }

 DRAW(x, y); }

Avoid floating point on yf by multiplying all
operations involving it by 2*Dx. Can modify for
FP operations by un-optimising and changing
start point finding algorithm for floats
Difference Method (line, octant 1)
Observation: if cbyaxk  then k < 0 =

above line, k > 0 = below line, k = 0 = on line
Given that a pixel is on the line the next pixel
is either E or NE: make decision at (x+1, y+½)

If E then d’ = d + a else d’ = d + a + b
a = (y1 – y0); b = (x0 – x1);

c = y0*x1 - x0*y1; x = ROUND(x0);

y = ROUND(y0 - (x – x0)*(a/b));

d = a*(x + 1) + b*(y + ½) + c;

DRAW(x, y); while (x < (x1 - ½)) {

x++; if (d < 0) { d += a; } else

{ y++; d += a + b; }; DRAW(x, y);}

Difference Method (circle, octant 2)
222 ryxk  : k<0 = inside, k>0 = outside

Make decision at (x+1, y-½). Either E (d’ = d
+ 2*x + 3) or SE (d’ = d + 2x – 2y + 5)
Can extend to ovals, but use points of 45o
slope, not octants and must be axis aligned.
Bezier Cubics

3

3

2

2

1

2

0

3)1(3)1(3)1()(PtPttPttPttP 

Continuity C1: continuous in position and
tangent vector

 G1: continuous in position,
tangent vector in same direction

 C0: continuous in position only
Drawing Naïve method: use a fixed step

size to draw some lines. But
cannot fix step so all Beziers
look good, and distance in real
space not linearly related to
distance in parameter space

 Adaptive subdivision: keep
dividing up the task of drawing
until a straight line is “good
enough” to approximate it. Test
goodness by checking that P1,P2
are not more than d from the
line between P0 and P3. Testing
this distance done by finding s
st. P(s) is closest to a fixed C:

need 2

.

AB

ACABs  (see p137)

Overhauser’s Cubic
As Bezier, but don’t have tangent vectors:
instead, work one out from surrounding data
points. Tangent at Pn is ½(P(n+1) – P(n-1)).
Hence for points A, B, C, D have Bezier P0 = B,
P3 = C, P1 = B+(C-A)/6, P2 = C-(D-B)/6

Douglas & Pucker
Simplify line chains: approximate chain as
straight line, find C in chain at greatest
distance from line, if this exceeds threshold
approximate as 2 recursively simplified chains
Cohen-Sutherland
4 bit code for each segment of the plane
divided by box lines: A=x<xL, B=x>xR,
C=y<yB, D=y>yT, Q=ABCD. If Q0=Q1=0,

inside rectangle (accept), if Q1&Q2!=0 both
ends outside and in same half plane (reject),
else intersect line with edge and start again
(the 1 bits tell you which to clip against)
Scanline Filling

1. Take polygon edges and place in edge
list sorted on lowest y value

2. Start with first scanline in polygon
(lowest y): edges intersecting this move
to the active edge list (AEL)

3. Repeat until AEL empty:
a. For each edge in the AEL find the

intersection point with the
scanline, sort into ascending x

b. Fill between pairs of intersection
points

c. Move to the next scanline,
remove edges from AEL if
endpoint < y, move edges to AEL
if start point ≤ y

Efficiently calculate intersection points with
incremental line drawing (store current x, dx,
starting/ending y, do x+=dx on increment)
Be careful with endpoints exactly on scanlines!
Sutherland-Hodgman Polygon Clipping
Clip arbitrary polygon against convex polygon
by iteratively clipping it by the edges of the
convex one. Clip to a line by going around
polygon edges keeping track of inside/outside
and outputting appropriate points

Transforms
2D rotation: 







 





cossin

sincos

 3D rotation (about x-axis):























cossin0

sincos0

001

Homogenous
Coordinates

),(),,(
w

y

w
xwyx 

Allow translations:

















100

10

01

0

0

y

x

 Concatenate by pre-multiply
(non-commutative)

Projection Parallel:),(),,(yxzyx 

 Perspective:),(),,(
z

y

z
xzyx 

Viewing
Transform

For screen centre (0, 0, d)
parallel to xy plane, z-axis
into screen, y-axis up, x-axis
to the right, eye at origin we

have),()','(
z
d

z
d yxyx  . Now

need to transform world so
these assumptions are met

 For camera at (ex, ey, ez), look
point at (lx, ly, lz), up along
vector (ux, uy, uz):

1. Translate eye point to
origin

2. Scale so that eye point

to look distance del 

3. Align el with z-axis by

rotating about the y-
axis into yz (angle

)(cos
22 ''''

''1

zx

z

ll

l



) and

then about the x-axis
into z (angle

)(cos
22 ''''''

'''1

zy

z

ll

l



)

4. Ensure the up vector
points along the
positive y-axis by
rotating around the z-
axis (angle

)(cos
22 ''''''''

''''1

yx

y

uu

u



)

Coordinates Object Modelling World View.

Viewing Proj. Screen
3D Clipping Front and back clipping planes

clipped to on the viewing
frustrum or 2D projection of it
(must retain z during
projection to use this)

Bezier Patches


 


3

0

3

0

,)()(),(
i j

jiji PtbsbtsP

As Beziers w/ 16 control ps. Continuity similar.
Drawing Simple method: use fixed

increments to approximate
the patch with polygons

 Tolerance method: 3D
extension of that for Beziers.
Need to watch out for gaps in
the resulting surface!

Depth Sort
Rendering

Transform polygons into 2D
retaining Z information and
then do a ordering on z to get
draw order: resolve
ambiguities (overlapping) by
splitting one polygon by the
plane of another

Back Face Remove those faces of a

Culling closed polygon that have
normal vectors away from the
viewpoint

BSP Tree 1. Select a polygon as the
root

2. Divide remaining
polygons into those in
front of the selected
polygon and those
behind (those that are
both are split into two)

3. Make two BSP trees,
one from each subset:
they are the front/back

 Then when drawing, and
viewpoint is in front of the
root polygon: draw the back
child tree, draw the root
polygon, draw the front child
tree

 BSP can be reused between
viewpoints (unlike sorting)

Z-Buffer As 2D scan conversion, but
store written pixel z value and
only overwrite the pixel if the
incoming one is lower

 Can interpolate z between
points just as x is already

Anti-aliasing Alleviate effects of sampling
(jaggies, lost polygons etc)

 Area averaging: clip polygons
to scanline, work out exact
contribution!

 Super-sampling: sample on a
finer grid, take average

A-Buffer Sub pixel sampling only
required in pixels partially
covered by a polygon

 Store list of masks per pixel in
depth order showing how
much is covered by a polygon

 When drawing, iterate down
the mask list finding out how
many pixels are actually
covered, do weighted average
of mask colors for final color

 Can discard masks behind a
mask which is all 1s

 To calculate mask calculate
the mask for each edge
bounded by the right hand
side of the pixel (use lookup
table) then XOR all masks

Diffuse
Shading

).(LNkII dl (L = normalized

light source vector, N =
surface normal, kd = portion
diffusely reflected, Il = light
source intensity)

Gourad
Shading

Calculate the diffuse
illumination at each vertex
rather than each polygon,
interpolate it across polygon

Phong
Shading

n

sl VRkII).( (R = vector of

perfect reflection, V =
normalized viewer vector, ks
= portion specularly reflect, Il
= intensity, n = roughness
coefficient)

 For a polygon, interpolate the
normal across the polygon to
be able to calculate the
reflection vector and do
Phong shading at each point

Ambient
Light

A hack to simulate diffuse

reflections: aakII 

Texturing Find texture space coordinate
for object space coordinate:
nearest neighbour, bilinear
reconstruction, bicubic

 If a pixel covers a large area
of the texture must average
texture across the area
(down-sample): store multiple
versions of the texture in MIP
map to avoid doing this

 Use texture to modify
transparency, reflectiveness,
surface normal (bumps)

Ray Tracing Shoot a ray from the eye
through the centre of each
observed pixel, take the
colour of the closest object hit

Ray-Plane
Intersection

sDOP b  , 0.  dNP ,

hence easy to find s
Ray-Polygon
Intersection

Intersect with plane of
polygon then draw line from
intersection to infinity and say
an odd number of
intersections with polygon
edges means point is inside

Ray-Sphere
Intersection

0)).((2  rCPCP , can

find intersection by solving
quadratic equation. No
intersection: imaginary results

Special
Effects

Once you have the
intersection point, normal can
be found and hence shoot
rays to lights to get
diffuse/specular reflection
with shadowing

 Spawn new rays to determine
mirrored color (beware cycle)

 Allows for transparency and
refraction by continuing ray

Sampling Single point, super sampling,
adaptive super sampling

 Grid, random, Poisson disc,
jittered sampling methods

Distributed
Ray Tracing

Distribute multiple samples
over some range

 Anti-aliasing (distribute
sampling rays over pixel area)

 Soft shadows (distribute rays
to area light source over
some range of angles)

 Depth of field (distribute
camera position over a range)

 Motion blur (over time)

Convolution
Filtering

Blur:

















111

111

111

9
1

Gaussian:

















121

242

121

16
1

 Edges:

















111

000

111

Median
Filtering

Take median value of pixels in
neighbourhood as new value
(good for shot noise)

Point
Processing

Invert image, improve
contrast, modify filter output,

gamma correction (
1

' pp )

Misc. Arithmetic (multiplication,
subtraction), alpha blending

Halftoning Grow halftone dot from the
centre, pixels must be
connected (for printing)

 Use simple matrix of numbers
to store dot growth sequence

Ordered
Dither

Growth matrix as before, but
pixels are evenly spread

1-1 Pixel
Mapping

Turn a pixel on if its intensity
is greater than or equal to the
value of the corresponding
cell in the tiled growth matrix

Error
Diffusion

Accumulated error in
quantisation is pushed out to
surrounding pixels and effects
the direction in which they are
rounded. Usually push dither
down and right in ratio of 1:1

Encoding Variable length symbols
 Difference mapping (pixels

similar to those on each side)
 Predictive mapping (use known

values to guess next)
 Run length encoding: simple or

alternating regions of N
different, M similar pixels

Transforms Transform N pixel values into
coefficients on N basis
functions, quantise these

Walsh-
Hadamard

H(u,v,x,y) is an array of
weights. 1D version:

),,,(),,,(1 yxvuHvuyxh

N


Forward
Transform 










1

0

1

0

),,,(),(),(
N

x

N

y

vuyxhyxfvuF

Backward
Transform 










1

0

1

0

),,,(),(),(
N

u

N

v

yxvuHvuFyxf

Wavelets Localised transformation
function, scaled and shifted

 Haar basis functions:

JPEG
1. Subtract 128 from each pixel value
2. Process each 8x8 image block in turn
3. Get the 2D DCT for each block
4. Quantise each coefficient by the values

in the quantisation matrix
5. Linearize the quantised coefficients
6. Encode coefficients: DC coefficient

coded relative to previous block,
variable length code for non-zero AC
coefficient + its preceding string of 0s

(i.e. anticipate many 0s in the output)

