Stack Machines	Operand stack to replace accumulator More intermediate results within the CPU -> less memory access required Code density, can reuse to implement recursion Fits naturally to equations (reverse Polish notation)	Victim Cache Line Replacement	location As direct mapped but with a one line buffer to store the last line overwritten Only applied to set/fully associative caches, clearly LRU: requires more info. NLU: pass the "potato" on if a cache line is accessed
Reg. Machines	Small, fast local memory for intermediate results Practical for small memories to be multiported (allows for parallelism in CPU)	Writes	Random: simple, works well If data is already in the cache then write over it If not in cache then either fetch on write / write around
Amdahl's Law	speedup = $\frac{\text{entiretask perf w/ enchance.}}{\text{entiretask pery w/outenhance.}}$	Write	Data is written to both cache
CISC	Make common case fast Eliminate the semantic gap Instruction usefulness limited	Through	and lower level memory Common on multiprocessor systems for cache coherency Use bus snooping on SMP
Exceptions	or so general it is slow Hardware (e.g. divide by 0) Software (e.g. SWI #) Invoke exception hander	Write Back	(does not scale > 2 CPUs) Data is written to cache only Written to main memory upon replacement, can use
Memory	SRAM: maintains store when provided with power 4-6 transistors per bit, fast DRAM: requires refreshing	Write Buffer	dirty bit to prevent this when it is unnecessary Avoid CPU stalling by buffering writes Also perform write merging:
Latencies	1 transistor per bit, fairly fast Register file: 1 cycle L1 cache: 1-3 cycles L2 cache: 3-9 cycles Main memory: 10-100 cycles	Virtual and Physically Addressed	can take advantage of burst V + P addresses only differ in upper bits, if cache is no bigger than a page then can
Locality	Note that DRAM can do burst reads and writes: 2-8 cycles Hard disk: 10 ⁶ cycles! Temporal: access recently used memory again soon Spatial: access close to recently used memory soon		use lower bits of V to access the cache without conflict Otherwise use P address for cache or access with V and use P (concurrently found) to compare tags in cache Still have problems with
Cache Line	Group of around 4 neighbouring words stored	TLB	aliasing of P addresses in V Cache recent translations Fully associative cache
Fully Associative	Store any word anywhere in the cache, lookup by address Huge overhead involved!		TLB miss must be looked up Potential control hazard
Direct Mapping	Use part of the address to map onto a cache line Compare tag / valid flag in line to determine if it really	Pipelining	Increases frequency and latency (due to latch time) Best to make pipeline stages of similar length
	caches the address Behaves badly when using data from overlapping addrs.	Exceptions	Imprecise: deep pipeline Precise: when you want OS to be able to restart it
Set Associative	As direct mapping, but with a set of cache lines at each	Instruction Replays	Only find out about cache misses in next stage!

	This means that the pipeline	
	has advanced too far: must	
	replay instructions to give	
	cache hardware more time	
	While waiting for cache, refill	
	the pipeline with instructions	
_	from the I-cache	
Control	Caused by branching and not	
Hazard	clearing the pipeline	
	Could document behaviour	
	and use branch delay slots	
Data Hazard	Caused by not taking	
	account of results yet to be	
	written back that is still in	
	other pipeline stages	
	Use feedforward/bypass Sometimes have to stall	
	pipeline if later instructions	
	depend on e.g. memory	
	fetches: can introduce	
	bubbles, so minimise this	
	Could document behaviour	
	and use load delay slots	
	Otherwise have hardware	
	detect it (e.g. scoreboarding)	
Parallel	Synchronous communication	
	Timing assumption can be	
	violated by skew: doesn't	
	work for high f or long s	
Serial	Asynchronous transmission	
	Use 8B/10B coding to	
	guarantee the run length	
	(allows clock recovery), DC	
	balance (allows AC coupling)	
Control Flow	Concurrency simulated via	
	interrupts / scheduler	
	Has to throw away register	
	file, disrupt caching/pipeline	
	Load operations cause stall	
Data Flow	Model dependency graph in	
	CPU, execute it concurrently	
	Inherently concurrent and	
	latency tolerant	
	Easy to take advantage SMP	
	Too much concurrency, so	
	assignment is a problem	
	Makes I/O difficult	
	Ineffective use of very local	
	storage (e.g. register, stack)	
	Scheduling policies simple	
	ion may be needed, check	
what the exar	n questions ask on this \odot	