
Stack
Machines

Operand stack to replace
accumulator

 More intermediate results
within the CPU -> less
memory access required

 Code density, can reuse to
implement recursion

 Fits naturally to equations
(reverse Polish notation)

Reg.
Machines

Small, fast local memory for
intermediate results

 Practical for small memories
to be multiported (allows for
parallelism in CPU)

Amdahl’s Law
enhance. pery w/out task entire

enchance. w/ perf task entire
speedup

 Make common case fast
CISC Eliminate the semantic gap
 Instruction usefulness limited

or so general it is slow
Exceptions Hardware (e.g. divide by 0)
 Software (e.g. SWI #)
 Invoke exception hander

Memory SRAM: maintains store when
provided with power

 4-6 transistors per bit, fast
 DRAM: requires refreshing
 1 transistor per bit, fairly fast
Latencies Register file: 1 cycle
 L1 cache: 1-3 cycles
 L2 cache: 3-9 cycles
 Main memory: 10-100 cycles
 Note that DRAM can do burst

reads and writes: 2-8 cycles
 Hard disk: 106 cycles!
Locality Temporal: access recently

used memory again soon
 Spatial: access close to

recently used memory soon
Cache Line Group of around 4

neighbouring words stored
Fully
Associative

Store any word anywhere in
the cache, lookup by address

 Huge overhead involved!
Direct
Mapping

Use part of the address to
map onto a cache line

 Compare tag / valid flag in
line to determine if it really
caches the address

 Behaves badly when using
data from overlapping addrs.

Set
Associative

As direct mapping, but with
a set of cache lines at each

location
Victim As direct mapped but with a

one line buffer to store the
last line overwritten

Cache Line
Replacement

Only applied to set/fully
associative caches, clearly

 LRU: requires more info.
 NLU: pass the “potato” on if

a cache line is accessed
 Random: simple, works well
Writes If data is already in the

cache then write over it
 If not in cache then either

fetch on write / write around
Write
Through

Data is written to both cache
and lower level memory

 Common on multiprocessor
systems for cache coherency

 Use bus snooping on SMP
(does not scale > 2 CPUs)

Write Back Data is written to cache only
 Written to main memory

upon replacement, can use
dirty bit to prevent this when
it is unnecessary

Write Buffer Avoid CPU stalling by
buffering writes

 Also perform write merging:
can take advantage of burst

Virtual and
Physically
Addressed

V + P addresses only differ
in upper bits, if cache is no
bigger than a page then can
use lower bits of V to access
the cache without conflict

 Otherwise use P address for
cache or access with V and
use P (concurrently found) to
compare tags in cache

 Still have problems with
aliasing of P addresses in V

TLB Cache recent translations
 Fully associative cache
 TLB miss must be looked up
 Potential control hazard

Pipelining Increases frequency and
latency (due to latch time)

 Best to make pipeline stages
of similar length

Exceptions Imprecise: deep pipeline
 Precise: when you want OS

to be able to restart it
Instruction
Replays

Only find out about cache
misses in next stage!

 This means that the pipeline
has advanced too far: must
replay instructions to give
cache hardware more time

 While waiting for cache, refill
the pipeline with instructions
from the I-cache

Control
Hazard

Caused by branching and not
clearing the pipeline

 Could document behaviour
and use branch delay slots

Data Hazard Caused by not taking
account of results yet to be
written back that is still in
other pipeline stages

 Use feedforward/bypass
 Sometimes have to stall

pipeline if later instructions
depend on e.g. memory
fetches: can introduce
bubbles, so minimise this

 Could document behaviour
and use load delay slots

 Otherwise have hardware
detect it (e.g. scoreboarding)

Parallel Synchronous communication
 Timing assumption can be

violated by skew: doesn’t
work for high f or long s

Serial Asynchronous transmission
 Use 8B/10B coding to

guarantee the run length
(allows clock recovery), DC
balance (allows AC coupling)

Control Flow Concurrency simulated via
interrupts / scheduler

 Has to throw away register
file, disrupt caching/pipeline

 Load operations cause stall
Data Flow Model dependency graph in

CPU, execute it concurrently
 Inherently concurrent and

latency tolerant
 Easy to take advantage SMP
 Too much concurrency, so

assignment is a problem
 Makes I/O difficult
 Ineffective use of very local

storage (e.g. register, stack)
 Scheduling policies simple
More information may be needed, check

what the exam questions ask on this

