_			
Register	Finitely many registers, program	Functions	$Prog_e$ starting with $R_1 = x$ and
Machines	with instructions of form:		other regs. 0 halts with $R_0 = y$
	L: R ⁺ □ L'		Not all pfns. computable:
	L: R ⁻ 🗆 L',L" L: HALT		$f(e) = \begin{cases} 0 & \text{if } \varphi_e(e) \uparrow \\ undefined & \text{if } \varphi_e(e) \downarrow \end{cases}$
	Computation halts because of		$\int (undefined \text{if } \varphi_e(e) \downarrow$
	HALT or erroneous jump	Decidable	A subset S of N is decidable \Box
	Specifies partial func. (↑ undef.)	Sets	exists a RM M such that
	A partial function f : $N^{n} \Box N$ is		$\varphi_{i(M)}(x) \downarrow \land \varphi_{i(M)}(x) = 1 \longleftrightarrow x \in S$
	computable if there is a RM M		
	with n+1 registers such that	Turing	Set Σ of tape symbols, _, $\triangleright \in \Sigma$
	$f(x_1,,x_n) = y \square$ the computation	Machines	Set K of machine states, $s \in K$
a	of M with $R_i = x_i$ halts with $R_0 = y$		A transition function,
Coding	$\langle x, y \rangle = 2^{x} (2y+1)$		$\delta \in Fun(K \times \Sigma,$
Register Machines	$\langle x, y \rangle = 2^{x}(2y+1)-1$		$(K \cup \{acc, rej\}) \times \Sigma \times \{L, R, S\})$
Machines			which always moves right when
	\langle , \rangle is a bijection onto N/{0}		over the initial tape symbol
			Configuration specified by (q,l,r)
	$\langle , angle$ is a bijection onto N		$q \in K \cup \{acc, rej\}, l, r \text{ left and}$
Lists	Nil = 0, Cons x I = $\langle x, l \rangle$		right finite tape symbol lists Halts if transition seq. finite
Programs	$code(R_i^+ \rightarrow L_i) = \langle 2i, j \rangle$	Church-	Every algorithm (in the intuitive
	$code(R_i^- \rightarrow L_j, L_k) = \langle 2i+1, \langle j, k \rangle \rangle$	Turing	sense) can be realized as a
			Turing machine
	code(HALT) = 0		Extensions to TM, alternative
	Bijection to N (prog. w/ index e)		formalizations have been shown
Universal Degister Machine			to determine same set of computable functions
1. Copy P to T, copy PC th list item in T to N			computable functions
		Kleene	$e \equiv e'$ if either both are
2. If N=0 HALT else decode N as $\langle y, z \rangle$,		Equivalent	undefined or they are both
assign y to C, z to N		-	defined and the values they
	ove register values from list in A up	Primitive	denote are equal
	quired one (which is put in R), g preceding values as list in S (deal		$proj_i^n(x_1,,x_n) = x_i$
with high reg. by zero filling)4. Execute instruction on R, update PC,		Recursion	$zero^n(x_1,,x_n)=0$
			suc(x) = x + 1
restore register values from R, S to A			$f \circ (g_1, \dots, g_n)(x_1, \dots, x_m) = z \leftrightarrow$
5. Repeat from step 1			$g_i(x_1,,x_m) = y_i \wedge f(y_1,,y_n) = z$
Halting Problem A RM H decides the halting problem if, loading			$[\rho^n(f,g)](x_1,,x_n,x) = y \leftrightarrow$
	² with [a ₁ ,,a _n], computation of H		$f(x_1,,x_n) = y_0 \land \forall y \in Z_x$
halts with R_0 containing either 0 or 1, and R_0			
contains 1 when H halts the computation of			$g(x_1, \dots, x_n, i, y_i) = y_{i+1} \land y = y_x$
the RM program $Prog_e$ started with $R_1,,R_n =$			Primitive recursive functions are only those built using these rule
a ₁ ,,a _n does halt			All computable and total
No such H can exist since you can obtain from			
H an H' that runs the supplied program on the index of the supplied program and does the		Partial	$[\mu(f)](x_1,,x_n) = x \leftrightarrow$
opposite of the result. Now running H' with the		Recursion	$\forall i \in Z_{x+1} \cdot f(x_1, \dots, x_n, i) = y_i \land$
index of H's program reveals a contradiction.			$\forall i \in Z_x, y_i > 0 \land y_x = 0$
			Partial recursive functions are

Computable $\varphi_e(x) = y \leftrightarrow$ the computation of

Partial recursive functions are those built up using this rule

and those of primitive recursion There are total recursive functions which are not primitive recursive. Given formal descriptions of primitive recursive functions, say $e(x,y)=f_x(y)$ if x is such a description. Now e'(x)=e(x,x)+1is not primitive recursive since if it was there would be x such that $e'=f_x$, and so $f_x(x) = e'(x) =$ $e(x,x)+1 = f_x(x)+1$ All computable, furthermore all computable functions are in PR

Enumeration S is recursively enumerable \Box it is empty or there is a total recursive function f s.t.: $S = \{ f(n) \mid n \in N \}$ S is co-r.e. iff N\S is r.e. Decidable set □ recursive set S is recursive \Box it is both r.e. and co-r.e. (i.e. run r.e. and co-r.e. machines together) Semi decidable \Box in_s in PR $in_{S}(x) = \begin{cases} 1 & x \in S \\ undefined & x \notin S \end{cases}$ $S=Im(f) \square S$ r.e. for f'(x) by decoding x as (a, t) and running f(a) for t steps S r.e. \Box S=Dom(f) for f'=µ(g) g(x,y)=0 only if f(y)=xS semi decidable \Box S=Im(f) by f'(x) = x iff $in_S(x) \downarrow$ Recursive set \Box r.e. set Some sets are not r.e. (e.g. set of codes of total functions: consider tot. $g(x) = \varphi_{f(x)}(x) + 1$) Some r.e. sets are not recursive (e.g. set of codes of functions that halt w/ input 0: is r.e. because = $Dom(\varphi_x(0))$) $S=Dom(f) \square S$ semi decidable since $in_s(x) = ifzero(f(x),1,1)$ PR