	Register Machines
	Finitely many registers, program with instructions of form:

	
	L: R+ ( L’
L: R- ( L’,L’’
L: HALT

	
	Computation halts because of HALT or erroneous jump

	
	Specifies partial func. (( undef.)

	
	A partial function f : Nn ( N is computable if there is a RM M with n+1 registers such that f(x1,…,xn) = y ( the computation of M with Ri = xi halts with R0 = y

	Coding Register Machines
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 is a bijection onto N/{0}
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 is a bijection onto N

	Lists
	Nil = 0, Cons x l = 
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	Programs
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Bijection to N (prog. w/ index e)


	Universal Register Machine

	1. Copy P to T, copy PCth list item in T to N

2. If N=0 HALT else decode N as 
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, assign y to C, z to N

3. Remove register values from list in A up to required one (which is put in R), saving preceding values as list in S (deal with high reg. by zero filling)
4. Execute instruction on R, update PC, restore register values from R, S to A

5. Repeat from step 1

	Halting Problem

	A RM H decides the halting problem if, loading R1 with e, R2 with [a1,…,an], computation of H halts with R0 containing either 0 or 1, and R0 contains 1 when H halts ( the computation of the RM program Proge started with R1,…,Rn = a1,…,an does halt

	No such H can exist since you can obtain from H an H’ that runs the supplied program on the index of the supplied program and does the opposite of the result. Now running H’ with the index of H’s program reveals a contradiction.


	Computable Functions
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the computation of Proge starting with R1=x and other regs. 0 halts with R0 = y

	
	Not all pfns. computable:
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	Decidable Sets
	A subset S of N is decidable ( exists a RM M such that 
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	Turing Machines
	Set 
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 of tape symbols, 
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Set K of machine states, 
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A transition function, 
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 which always moves right when over the initial tape symbol

	
	Configuration specified by (q,l,r) 
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	Halts if transition seq. finite

	Church-Turing
	Every algorithm (in the intuitive sense) can be realized as a Turing machine

	
	Extensions to TM, alternative formalizations have been shown to determine same set of computable functions


	Kleene Equivalent
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 if either both are undefined or they are both defined and the values they denote are equal

	Primitive Recursion
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	Primitive recursive functions are only those built using these rule

	
	All computable and total


	Partial Recursion
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	Partial recursive functions are those built up using this rule and those of primitive recursion

	
	There are total recursive functions which are not primitive recursive. Given formal descriptions of primitive recursive functions, say e(x,y)=fx(y) if x is such a description. Now e’(x)=e(x,x)+1 is not primitive recursive since if it was there would be x such that e’=fx, and so fx(x) = e’(x) = e(x,x)+1 = fx(x)+1

	
	All computable, furthermore all computable functions are in PR


	Enumeration
	S is recursively enumerable ( it is empty or there is a total recursive function f s.t.:
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	S is co-r.e. iff N\S is r.e.

	
	Decidable set ( recursive set

	
	S is recursive ( it is both r.e. and co-r.e. (i.e. run r.e. and co-r.e. machines together)

	
	Semi decidable ( inS in PR 
[image: image22.wmf]î

í

ì

Ï

Î

=

S

x

undefined

S

x

x

in

S

1

)

(

 

	
	S=Im(f) ( S r.e. for f’(x) by decoding x as (a, t) and running f(a) for t steps

	
	S r.e. ( S=Dom(f) for f’=μ(g) g(x,y)=0 only if f(y)=x

	
	S semi decidable ( S=Im(f) by f’(x)=x iff inS(x)(

	
	Recursive set ( r.e. set

	
	Some sets are not r.e. (e.g. set of codes of total functions: consider tot. 
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	Some r.e. sets are not recursive (e.g. set of codes of functions that halt w/ input 0: is r.e. because =
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	S=Dom(f) ( S semi decidable since 
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