
Lexing Define tokens with regular
expressions (finite automata)

 Disambiguate with longest match,
rule priority, white space

CFG A quadruple (N, T, R, S):
N – non terminals
T – terminals
R – rules, *)(TNNR

S – start symbol, NS

 Disambiguate with rewrite:

E ::= E + E | E * E | N
E ::= E + F | F, F ::= F * N | N

LL(k) Recursive descent parser
 For each non terminal compute

set of terminal symbols that can
begin strings derived from X, set
of symbols that can follow X

 Eliminate left recursion with

factoring: E ::= T | E + T

E ::= T E’, E’ ::= + T E’ |
 Could be conflicts in the predictive

parse table (showing possible
derivation rules for current non-
terminals), so not in LL(k)

LR(k) Postpone production selection
until entire right hand side of
production rule has been seen

LR(0) Parser
Consists of a stack (list of states, topmost state
is the current one), action table (to which new
state it should move), goto table (a grammar
rule to apply given the current state and
current symbol in the input stream)

1. Initialize stack with [0]
2. Lookup action by state, input terminal:

a. Shift: advance input stream and
push char, new state onto stack

b. Reduce: push reduced rule, for
each symbol on RHS of rule
remove a state from the stack,
lookup in goto table by current
state and LHS of rule and push it
onto the stack

c. Accept: terminate
d. No action: error out

LR(0) Parser Generators
LR(0) items: if the current state contains the
item A ::= α●cβ and the current symbol is c
then shift (next state is A ::= αc●β), if the
current state contains the item A ::= α● then
reduce, A ::= α●Xβ is the tricky case (ε-trans)
Can use these to represent parser as a NFA:

1. Each LR(0) item is a state

2. Transition from A ::= α●cβ to A ::=
αc●β with label c (c [non-]terminal

3. Transition from A ::= α●Xβ to X ::= ●γ
with label ε (X non terminal)

4. A ::= α● is a final state (i.e. reduce)
5. Obvious start state

Build a DFA from the NFA by:
1. Create rule S ::= A$
2. Create first state Closure({S::= ●A$})
3. Pick a state I, for each item A ::= α●Xβ

in I find Goto(I, X), add it if it is not
already a state, and add an edge from I
to Goto(I, X)

4. Repeat step 3 until no more additions
Note: Goto(I, X) is the set of LR(0) items in I
that can be got by moving the ● over X
Construct the goto and action tables: shifts are
terminal-labelled edges, gotos are non-
terminal labelled edges and reductions are
accepting states in the DFA (those containing
an item of the form A ::= α●): note conflicts!
LR(1)
Parsers

Reaction to problems with LR(0):
unnecessary conflicts

LR(1) items: A pair of a LR(0) item & terminal
(lookahead terminal, follows the production)
Modify closure operation so that it closes in a
production for every possible first symbol
Now a state in the DFA that contains [X ::=
α●, b] is recorded in the table as “reduce on
lookahead b”: allows disambiguation in parse!
LALR Relies on the observation that

often a reducing state contents
can be grouped by the derivation
rule part, with a number of
lookaheads for each one

 10 times fewer states
Parse
Tree

A derivation tree based on the
actual grammar rules

AST Contains only the information
needed to generate an
intermediate representation

Scope Scope: range of statements over
which a variable visible

 L-value: memory location
 R-value: value stored at location
 Static and dynamic binding

Stack
Machine

Pop, popto, push, pushfrom,
swap, arith, goto, test, load, store

Register
Machine

Registers, memory locations,
immediates

 Can do simple direct stack
translation to emit register code

Nested
Functions

How do you access stack
allocated variables in functions
you are nested in?

 Dijkstra Displays: each stack
frame contains pointers to all
necessary frames at a lower
nesting depth (uses space, slows
function call, but runtime better)

 Single Static Link: Each frame
contains a single static link to the
most recent frame at a lower
nesting depth (less space, but
runtime must chase pointers)

 Lambda Lifting: Explicitly expand
functions to take all free variables
as arguments (but lots of
duplication of values on the stack)

 Closures: heap-allocated list of
function pointer and free
variables (necessary for using
functions as values)

Optimisation Inlining small functions
 Constant folding
 Unused variable elimination
 Direct function calls as a

special case of closures
Object Files Symbols exported, imported
 Relocation information
Memory Explicit memory management

(potentially better but hard)
 Garbage collection: use root

set (stacks, registers) to
identify reachable objects and
reclaim unused ones

 Reference counting: can be
costly (memory access), can’t
detect cycles, incremental

 Mark and sweep: do depth
first traversal of object graph
and add unmarked data onto
free list (must only do this
when there is enough garbage
or GC cost is high), may use
lots of stack (recursion), heap
fragmentation

 Copy collection: use two
heaps, copy reachable data
between them, simple, no
fragmentation, but uses lots
of memory and long GC pause

 Generational: use copy
collection for young

generation, mark and sweep
for the older ones, track
pointers between generations,
collect old generations
infrequently

Objects Static calls: resolve function
pointer by static type

 Dynamic calls: resolve function
pointer by object vtable

 Subtyping: implement by class
prefixing (but if using MI must
add explicit pointer conversion)

 Enforce visibility rules with errors
during compilation

JVM Typed instructions
 invokevirtual, invokeinterface,

invokestatic, invokenonvirtual
 Class loader: verification of type,

allocation of class memory w/
default values, symbol resolution,
initialization of class ctors

 Bytecode interpreter, JIT compiler
(method granularity), adaptive
compiler (do advanced
optimization for hottest methods)

