
Instruction Set Architecture

CISC: good code density, assembly programming common, typ-
ically microcoded. Microcode complicates exception handling
and is an unnecessary overhead. RISC: exposes pipeline to the
compiler, makes the common case fast and assumes the use of
HLL.

Specifies the functional behaviour of an instruction set pro-
cessor. Register type: accumulator, stack, general purpose.
Instruction types: three address, two address, one address,
zero address (stack based). Operands: memory-memory
(may have cache registers), register-memory or register-register
(load/store). Calling conventions for arguments, stack usage
etc. Byte ordering. Alignment. Condition registers or flags
(may impact code scheduling). Encoding (may impact code
density, consume memory and power). Static/dynamic inter-
face (try and shift functionality into the myopic compiler).

Pipelining

speedup = time with enhancement
time without enhancement =

1

(1−Fractionenhanced)+
F ractionenhanced
Speedupenhanced

Make the common case fast: all enhancements consume design
and implementation resources and may slow the common case.

Time
Program = Insructions

Program
Cycles

Instruction
Time
Cycle

Temporal and spatial locality are applied to the instruction
reference and data reference streams.

Powerdynamic = 1
2Capacitative Load × V oltage2 ×

Frequency Switched

Powerstatic = Currentstatic × V oltage

Can use functional (ISA level), performance (micro-
architectural level) and RTL (implementation specific details)
simulation. Can be trace or execution driven. Need to have
benchmarks that prevent benchmark engineering. Can sum-
marize performance results with arithmetic mean, weighted
arithmetic mean, geometric mean ((

∏n
i=1 ai)

1
n) or harmonic

mean (n∑n

i=1
1

ai

).

Structural hazards arise from resource conflicts, data hazards
from inter-instruction dependencies and control hazards from
instructions that change the program counter.

Data dependencies are either anti-dependencies (write after
read), output dependence (write after write) or true (read after
write).

We can prevent data hazards by adding hardware to avoid haz-
ards (e.g. interlock or forwarding) or by scheduling code to
prevent data dependence becoming a data hazard (e.g. branch
delay slots).

We can reduce the penalty of control hazards by computing
simple branch results earlier in the pipeline (e.g. in the register

read stage) but ultimately will have to add branch prediction or
add a branch delay slot (single slot filled 60-75% of the time).

Exceptions require us to be able to restart execution. If we
can guarantee that instructions prior to the faulting one have
executed and later ones have not begun to execute we support
precise exceptions. This can be done by tagging the faulting
instruction and handling it at the end of the pipeline (write-
back stage). To resume we may need to save multiple PCs if
we use delayed branching.

We could introduce multiple intermediate execution pipelines
for each functional unit, but this introduces further pipeline
hazards (may need to interlock on write-back and must ensure
the multiple pipelines respect data dependencies) and compli-
cates exception handling.

Pipelines are limited by the overheads of introducing additional
registers, clock distribution cost, difficulty of logic balancing
and increasing stalls due to pipeline hazards.

Branch Prediction

Static branch prediction: annulling branches allow the compiler
to make predictions: if it is wrong then the delay slot instruction
is nullified. When coupled with feedback this achieves a 90%
prediction rate.

Dynamic branch prediction:

• Bimodal (1 bit) counter: predict last taken.

• 2 bit counter scheme less sensitive to single misprediction,
3 bits limit of usefulness: read prediction from MSB.

• Can have branch history table indexed into by m bits of the
branch address, each entry being a counter: don’t worry
about conflict aliasing due to approximation.

• Local history predictors contain a per-address shift register
storing the last outcomes at that address: this can index
into an address-local or shared pattern history table which
holds counters.

• Global correlating predictors choose a counter to access
based on the behaviour of recent branches and m bits of
the address.

• Tournament predictors incorporate a local history and
global correlating predictor and choose between them on
the basis of a per-address 2 bit counter.

Can have negative (interfering) and positive (reinforcing) alias-
ing in prediction tables.

Typically need a branch target buffer (CAM) to store target
addresses by branch address because we need the target address
by the end of the IF stage. To improve accuracy you can use a
small hardware stack for return addresses to predict the targets
of RET instructions, which will vary dynamically.

1

Super-scalar

Super-pipelined processors have M sub-stages per pipeline
stage. Super-scalar processors have multiple simultaneous
pipelines out to the super-scalar degree P.

Typical structure:

1. Fetch and decode in program order as usual.

2. Rename registers and deposit renamed instructions in the
issue window.

3. When operands are available, instructions in the issue win-
dow are dispatched to functional units (wakeup select upon
operands broadcast).

4. Executed instructions are retired in program order to allow
precise exception handling.

To do highly concurrent instruction fetch, need to be able to do
unaligned (wrt. cache line width) reads and potentially non-
sequential addresses.

Trace caches cache dynamic instruction sequences (in partially
decode form) along with branch results. Trace hits occur when
fetch addresses match the tag and branch predictions match the
branch flags.

Register renaming implemented via a list of free registers. A
register map table records the current architectural (ISA) to
physical register mapping. Multiple mappings may be stored
to allow recovery upon exception. Renaming exposes more ILP
by removing “false” dependencies.

Can do in-order issue with instructions issued from quartet,
decoder only advancing once that quartet had been issued. Out
of order execution more typical since costs essentially no cycle
time.

Memory aliasing : two memory references involving the same lo-
cation. Memory disambiguation: determining if two references
will alias.

Memory operations can be executed out of order but stores
must not be speculative and earlier instructions must have their
exceptions handled. Memory carried dependencies must also be
respected. The adopted consistency model may also limit the
extent to which we can retire instructions out of order.

Loads and stores are put in separate queues in program or-
der. Can do store-to-load forwarding if have sufficient aliasing
information. Can do speculative loads where some store ad-
dresses earlier in program order are not known, when the ad-
dress arrives the speculation is checked and an exception raised
if needed. Load speculation can be prevented with a dynamic
load wait table saying which loads have previously caused ex-
ceptions upon speculation. May need to scan the queue for
load-load ordering violations depending on consistency model.

Two main techniques to allow speculative execution and excep-
tions: reorder buffers and unified register files. In reorder buffer

results are generated out of order and are only committed to
the register file when all earlier instructions have completed. If
a problem is detected the buffer is cleared and instruction fetch
restarts. However, we now need to forward information from
the reorder buffer by using a scan upon read or register mapping
table which can mention a buffer entry. With a unified register
file, we store all registers in a single large file. A map is main-
tained recording the future mapping of architectural registers
to physical ones (used by renaming), and a second in-order map
is maintained as instructions commit that maintains a mapping
corresponding to current the architectural register file. Upon
an exception we copy the in order mapping to the future map-
ping: this still needs a reorder buffer but it is simpler. This
can be extended to allow recovery from branch misprediction
by storing the register mapping table every time we encounter
a branch.

Super-scalar techniques are limited by complexity, poor scal-
ing characteristics of the hardware structures and diminishing
returns on ILP.

Software ILP

VLIW packs multiple independent operations into a single “very
long” instruction. Execution is statically scheduled by the com-
piler.

Unfortunately, ILP within a basic block is limited. To miti-
gate this, you can use loop unrolling, which additionally elim-
inates some branch instructions and a number of loop count
increment/decrements. Code size and register pressure may in-
crease however. Software pipelining schedules instructions from
different iterations of the loop to create a new loop body con-
sisting of independent instructions that may execute in parallel.
It symbolically unrolls the loop and prevents spurious pipeline
fills/drains. However, this may lead to complex prologue and
epilogue code being generated.

Can also do global scheduling to move instructions between ba-
sic blocks. Trace scheduling finds the most likely path through
the basic blocks using static branch prediction and optimizes
the instruction schedule within the trace. The compiler inserts
bookkeeping code at the the trace boundaries (entries and exits)
to compensate for code motion. Superblocks are traces without
branches back in, and can be created by copying the original
basic block: this removes the need for compensation code on
entries but not exits.

Predicated instructions can eliminate some branches, and can
be emitted via if conversion. However they complicate data
forwarding and probably get annulled late in the pipeline.

Hardware can support memory reference speculation: do a
speculative load early and check it is valid at the original load
location, if not execute fixup code. Implemented by hardware
table of speculated load addresses checked by all later stores.

Rotating register files aid software pipelining by reducing the

2

need for unrolling. The rotating register base is incremented on
every iteration of the loop.

Parallelism

Coarse grained multi-threading has only one threads instruction
in the pipeline at once:

• Thread level parallelism: used for multiprogramming,
within applications.

• Switch-on-event multi-threading loads in a new thread
when the original blocks on e.g. cache miss, timeout. En-
sure a small switch penalty by using a short pipeline and
caching a few instructions from the next thread. Could
provide pipeline registers per-thread to allow stalls with-
out the need to flush.

Fine grained multi-threading has a new thread selected on every
clock cycle:

• May remove the need to detect and resolve inter-
instruction dependencies (e.g. data forwarding) and can
hide latency (removing the need for data cache?)

• Can provide strong performance guarantees if scheduling
policy is predictable (e.g. round robin)

Simultaneous multi-threading can utilise the functional units
left idle by the execution of a single thread to execute those
instructions from a second one. However, this increases cache
pressure and adds protection issues (e.g. need to add a thread
ID to TLB and cache).

Cache Memories

Unified caches allow storage of both instructions and data, but
it is common for a pipelined processor to want to access in-
struction and data memory in the same cycle. Separate caches
allow this and also tuning for the two different workloads.

Large cache blocks better exploit spatial locality but decrease
the number of blocks we can store. Larger blocks will also
increase our miss penalty (time taken to load the block).

Direct mapped cache: use part of an address to index directly
into a table, compare entry against tag bits. Has a low access
time but suffers from repeated evictions even when there are
many free entries.

Set associative caches use part of an address to index a fully
associative set that can hold a number of entries.

Fully associative caches make use of parallel CAM to locate
addresses in any location. By making them highly associative

instead power requirements can be reduced (only power on one
bank at a time). However they have high area requirements.

Block replacement policies are needed for set and fully associa-
tive caches: typically an approximation to LRU such as FIFO
or NLU, or even random.

Write policies: choice of write allocate or not (if data isn’t in
cache on write) and write through (allows cache coherence in
SMP) or write back (allows write buffering).

Cache misses are compulsory (block is brought into the cache
for the first time), capacity misses (working set exceeds cache
size) or conflict misses (due to many banks mapping to the same
set).

Caches are typically virtually indexed and physically tagged so
you can do a TLB lookup in parallel with cache access and
validate the tag is correct. This works as long as the page
size is > block size so the low bits that are used to index into
the index are invariant. Pure virtually addressed caches must
be flushed on context switch and may suffer from aliasing of
physical addresses.

Write buffers hide the lower throughput of the underlying mem-
ory system, allow write coalescing/bursting and allow store-to-
load forwarding. However it requires that read after write haz-
ards are detected and serviced from the buffer or the buffer is
flushed.

Multilevel inclusion has L1 data always being present in the L2
cache: this ensures that consistency between caches and I/O or
other SMP caches can be determined by checking the L2 cache
only. However, it uses valuable space and may be hard when
block sizes differ. Multilevel exclusion is better for instruction
caches because coherency is rarely a problem.

Can reduce miss penalty via reading critical word first or read-
ing only part of a block, especially when blocks large (but this
requires more tag bits).

Victim caches attempt to reduce conflict misses by storing a
fully associative record of the last lines displaced from L1.

Non-blocking caches useful in super-scalar processors since they
allow servicing hits or even misses during a miss.

Can design algorithms so that they work with caches:

• Ensure working set fits into the cache.

• Improve spatial locality by favouring sequential accesses to
non-unit strides.

• Fuse loops that access the same data to improve temporal
locality.

• Fiss loops that have large bodies to get better spatial lo-
cality within the loop.

• Merge or pad arrays to avoid references to different ar-
rays mapping to the same cache block (easy with a direct
mapped cache and three contiguous arrays of size which is
a multiple of the block size).

3

• Cache blocking: organize computation on e.g. matrix so
that you operate on just the subset of the data structure
that will fit into the cache at any given time.

• Prefetch upcoming data in hardware or software (not too
early or you will pollute the cache!): can be done by having
cache misses fetch the next sequential block as well as the
requested one, or detect other strided accesses to blocks
and get the next one in the sequence.

Main Memory

SRAM: 6 transistors, retains data in standby mode with min-
imal power. Very low latency compared to DRAM. Standard
process means it can share a die with processor.

DRAM: single transistor and capacitor, must be constantly re-
freshed. Read is destructive. Optimised for capacity and cost.
Organized as a bank of pages ≈ 1024 bits wide. Large page size
provides data burst capability: may match cache line size to
page size. Banks are organized to hold different address ranges
so that requests to different memory addresses may be serviced
in parallel in some cases. Careful organization of memory can
ensure that addresses do not map to the same bank of DRAM.
Memory controllers will perform scheduling of memory access
so that we don’t have to perform all DRAM operations sequen-
tially.

Have to deal with transient and persistent errors in small mem-
ory cells. This is done with redundant memory components and
ECC/parity schemes.

Through-die vias enable die stacking: DRAM/SRAM layered
on top of the actual CPU. Non-volatile memory has limited
erase/write cycles but can be useful as a cache for slower per-
sistent storage (i.e. disks).

Vector Processors

Provide ISAs that work on vectors. Vector registers hold fixed
number of elements and are massively multi-ported to allow lots
of parallelism.

Allow explicit exploitation of data-level parallelism while re-
ducing complexity and energy per operation (fewer dynamic
instructions, less switches, regular pattern of accesses).

Vectors are partitioned into multiple lanes, each containing
their own functional units. Elements are interleaved across the
lanes in order.

Initiation rate is how many elemental operations are completed
per cycle for each vector operation. Start up time is the latency
until the first result word from memory reaches the vector reg-
ister: to maintain an initiation rate of 1 the memory system
must be capable of providing/accepting data at this rate.

Complication of non-unit strides (e.g. in matrix multiplication)
solved with load vector with stride instruction. Variable vector
lengths dealt with VL register that controls length of vector
operation, strip mined loops to cope with fixed size chunks of
larger vectors. Use vector chaining/tailgating to begin read-
ing/writing over results of previous vector instruction due to
in-order element production and consumption. Can introduce
mask vector to control where operations are applied. Sparse
vectors typically supported via gather/scatter instructions.

SIMD supports data parallel operations on wide registers in
commodity processors.

Stream processors rely on your computation being organized
into streams and kernels. Allow exploitation of ILP, data and
task parallelism simultaneously for applicable applications.

Chip Multiprocessors

Shared address space/message passing possibilities for commu-
nication in distributed memory multiprocessors.

Symmetric shared memory architectures suffer from cache co-
herency problem. Solved via local bus snooping for writes and
updating/invalidating affected cache entries. Write-through
caches allow this to be implemented most efficiently, but cause
lots of bus traffic. To use with write-back caches processors
must be prepared to service read requests they see on the bus
from their write buffers.

Sequential consistency: the result of any execution is the same
as if the operations of all the processors were executed in some
sequential order and the operations of each processor obey the
local program order. This is violated by write buffers, over-
lapped writes, caches etc: relaxed memory consistency models
are used to permit this.

Niagara: single issue pipeline using fine grained parallelism and
directory-based cache coherency (maintained by the L2 caches
and lists sharers for a given cache block: writers notify sharers
to invalidate their cache).

Special Purpose Architectures

GPUs are increasingly programmable and are switching to a
unified architecture to cope with vertex and pixel heavy work-
loads.

Parallel supercomputers may come with FPGA as pro-
grammable coprocessor.

There is a trend to replace hardware with software to decrease
time to market and increase flexibility. To do this within hard
real time requirements, multiple cores with resource reserva-
tions can be used. Typically these are arranged in a tile con-
figuration with statically scheduled network communications.

4

Place and route tools ensure communication locality. This con-
figuration is particularly suited to stream processing applica-
tions.

Configurable processors allow designers to optimize CPUs for
specific applications. Might introduce special instructions for
operations that are hard or inefficient to express in software.

5

