
Enumerations By default allocate 
successive integer values 
from 0 

Type 
Conversion 

Automatic conversion may 
occur, generally widens 

Grammar Expressions have results, 
expressions followed by a 
semicolon are statements 

 Can separate several 
expressions with a comma, 
evaluated left to right with 
result being the RHS 

Globals Variables outside functions 
are initialised to 0 by default 

Externs Can declare but not define 
using the extern keyword 

 Extern within a function 
references a global var 

 Extern takes on int type by 
default, you need not spec it 

 Extern is optional on function 
declarations 

 Key point: declaration does 
not allocate memory 

Functions A function definition with no 
values means that its 
arguments should not be 
type checked!  

 Declare a function with no 
arguments using void 

 Can do partial parameter 
specification with … 

Static In the global scope, static 
does not export the symbol 

 In the local scope, static 
means variable retains value 

Preprocessor Deletes each occurrence of a 
backslash followed by \r\n 

 Replaces comments by “ “ 
 Does conditionals 
 Replaces definitions 
 Replaces escaped sequences 

in chars/strings, concats. any 
adjacent strings 

 #define name replacement 

 Prefixing a parameter with # 
places the value in quotes 

 Placing a ## between two 
parameters removes any 
whitespace between them 

 Override line and filenames 

with #line constant filename 
 #error some text 

Arrays Multidimensional with:  

int i[5][10] 

 Don’t need to pass the first 
dimension length to a 
function (i.e. the leftmost) 

Function 
Pointers 

int (*compare)(int, int) 

Structures struct circle c = {12, 

23, 5}; 

Unions Have size equal to their 
largest member 

Bit Fields struct foo { int f1 : 2; } 

 Do not have addresses 
Misc. const, volatile 

 typedef struct llist 

*LLptr; 

typedef struct _foo { 

int bar; } foo; 

 inline: preserves 

semantics, esp. still has an 
address, but must be defined 
in the same execution unit it 
is used in 

 

Types Character literals are now of 
type ‘char’ 

 Adds bool type (true, false) 
 Enumeration defines a new 

type, not constants, with no 
implicit convesion 

References int &refi = i[0]; 

 Implicit type conversion into 
a temporary is automatic for 
const references, else error 

Functions Overloading 
 Default arguments: double 

v=10.0, but cannot have 

defaults before required args 
Namespaces Collect related code 
 using keyword 

Classes private, protected, public 

 Structs are the same as 
classes but have default 
public access, not private 

 Constructors have the same 
name as class, destructors 
prefixed by a tilde 

 Statics are per-class 
 Can define an instance by 

assignment: does value 
copy, unless you define a 
copy constructor (with const 
reference argument). May 
also overload assignment 

 Const member functions 



 Use constructor notation to 
initialise class-class variables, 
must be used on const and 
reference variables, and to 
init a base class (by name) 

 Can make arrays of classes if 
they have default constructor 

 Friend functions can be 

declared in a class (friend 
Foo operator*(const Bar&, 

const Foo&);) 

 Non-virtual functions are 
called on the static type of 
the variable, pointer, or 
reference, virtual functions 
use the vtable 

 Can declare pure virtual 
functions with “= 0”: this 
makes the class abstract 

Multiple 
Inheritance 

Name clashes must be 
resolved by explicit class 
naming (using the 
namespace operator) 

 Need virtual base classes in 
the diamond situation 

Operator 
Overloading 

Define outside or within the 
class body. If you do both 
the compiler prefers the 
version outside the class 

Memory 
Management 

new, new[], delete, delete[] 

 Temporary objects not 
bound to expressions only 
exist during evaluation of a 
full expression! 

Exceptions try, throw, catch 

Templates template<class T> class 

Stack { push(T v); } 

template<class T> void 

Stack<T>::push(T v) { } 

 template<int i> class A { 

int b[i]; } 

template<class T, T val> 

class B { T blah = val; } 

 Not type checked until 
instantiation 

Template 
Specialisation 

template <class T> struct 

B { } 

template <> struct B<A> { 

} 

 template<int N> int 

fact() { return N*fact<N-

1>(); } 

template<> int fact<1>() 

{ return 1; } 

 Resolving overloads uses the 
most specialized call 

STL Separates algorithms from 

data structures (containers) 
using iterators (input, 
output, forward (= input + 
output), bidirectional, 
random access) 

 Adaptors modify the 
interfaces of components 
(e.g. reverse_iterator) 

 If a container dosen’t 
support your algorithm your 
container is wrong  

 Overload function calls inside 
classes: this lets you store 
per-instance data ie. closure! 

 


