
String Distance

distancehamming(x, y) =
∑n
i=1 cond(xi = yi, 0, 1).

distancelevenshtein(x, y) is the minimum number of insertions,
deletions and substitutions to transform x into y.

Given two strings an alignment is an assignment of gaps to po-
sitions in the strings so as to line up each letter in one sequence
with either a corresponding letter or a gap in the other sequence.
Paths in the edit graph are in bijection with alignments: → and
↓ are deletions and ↘ are (mis)matches.

Needleman-Wunsch

Given match weight m, mismatch penalty s and gap penalty d:

1. F (0, 0) = 0

2. F (0, j) = −jd

3. F (i, 0) = −id

4. For each i = 1 . . .m,j = 1 . . . n:

(a) (F (i, j), P tr(i, j)) = max


(F (i− 1, j)− d, UP)

(F (i, j − 1)− d, LEFT)

(F (i− 1, j − 1) + cond(xi = yi,m,−s), DIAG)

5. FOPT = F (m,n)

Space and time complexity of Θ(mn).

Needleman-Wunsch Overlap Detection

Does not penalize gaps at the start or the end. As Needleman-
Wunsch but initialize with:

1. F (i, 0) = 0

2. F (0, j) = 0

Upon termination, the optimal score is FOPT =

max

{
maxiF (i, n)

maxjF (m, j)
.

Smith-Waterman

Ignores badly aligning regions, modified from Needleman-
Wunsch:

1. F (0, j) = 0

2. F (i, 0) = 0

3. For each i = 1 . . .m,j = 1 . . . n:

(a) (F (i, j), P tr(i, j)) = max


(0, NIL)

(F (i− 1, j)− d, UP)

(F (i, j − 1)− d, LEFT)

(F (i− 1, j − 1) + cond(xi = yi,m,−s), DIAG)

4. FOPT = maxi,jF (i, j)

Needleman-Wunsch With Affine Gap

This uses a gap penalisation function γ(n) = d+(n−1)e where
n is the length of the gap. This reduces the penalty for long
gaps. F (i, j) represents the score of at alignment if xi aligns to
yi. (gap not open) G(i, j) represents the score if xi or yi aligns
to a gap (gap open).

1. F (0, 0) = 0

2. F (0, j) = d+ (j − 1)e

3. F (i, 0) = d+ (i− 1)e

4. For each i = 1 . . .m,j = 1 . . . n:

(a) F (i, j) = max

{
F (i− 1, j − 1) + cond(xi = yi,m,−s)
G(i− 1, j − 1) + cond(xi = yi,m,−s)

(b) G(i, j) = max


F (i− 1, j)− d
F (i, j − 1)− d
G(i, j − 1)− e
G(i− 1, j)− e

5. FOPT = F (m,n)

Banded

If we assume that that the optimal alignment has few gaps (<
k(max(n,m))) then the path of the alignment will be close to
diagonal. Space and time complexity of Θ(nk(max(n,m))) �
Θ(nm). This is done by searching just a diagonal band of the
matrix.

1. F (0, 0) = 0

2. F (0, j) = −jd

3. F (i, 0) = −id

4. For each i = 1 . . .m,j = max(1, i− k) . . .min(n, i+ x):

(a) (F (i, j), P tr(i, j)) = max


(F (i− 1, j)− d, UP) j > i− k(n)

(F (i, j − 1)− d, LEFT) j < i+ k(n)

(F (i− 1, j − 1) + cond(xi = yi,m,−s), DIAG)

5. FOPT = F (m,n)

1

Space Efficient Needleman-Wunsch

Idea is to perform divide and conquer on the sequences to
be aligned. To find the midpoint around which to partition
the problem, we use a space efficient version of Needleman-
Wunsch that computes alignment column-wise and only keeps
around the previous two columns in memory hence using only
Θ(min(m,n)) space. This version does not allow us to recon-
struct the optimal sequence but lets us compute the score of
two sequences d(x, y). So:

F (i, j) = d(x[1 : i], y[1 : j])

B(i, j) = d(x[i+ 1 : n], y[j + 1,m])

F (i, j)+B(i, j) is the score of the best alignment through (i, j).
This is computed in linear space and the best i found (since
F (m,n) = maxk(F (m2 , k) + B(m2 , k))) in time Θ(mn). The
divide and conquer algorithm can proceed in time Θ(mn) as
well.

Four Russians Heuristic

The n by n edit graph is partitioned into blocks of size t by t.
A block alignment of two sequences is one in which alignment
occurs through the insertion/deletion/alignment of blocks. A
block path is one that traverses every block through its corners.

1. Precompute all pairwise alignments of sequences of length
t with each other and store this in a lookup table. The
table will be of size 4t4t = 42t.

2. Lookup the appropriate alignment scores for the problem in
the table via binary search: this takes time Θ(n

2

t2 log2(42t)).

3. Use dynamic programming to find the optimal
block alignment score based on metric: s(i, j) =

max


s(i− 1, j)− dblock
s(i, j − 1)− dblock
s(i− 1, j − 1) +mblock(i, j)

where mblock(i, j) is

the result of the appropriate pairwise alignment. This
takes time Θ(n

2

t2).

Let t = log2(n)
4 and running time is bounded by

Θ(n
2

t2 log2(4
log2(n)

2)) = Θ

(
n2(

log2(n)
4

)2 log2(n)

)
= θ

(
n2

log2(n)

)

BLAST

Heuristic method to allow rapid sequence comparison of a query
against a database. Smith-Waterman uses too much time and
space.

1. Compile a list of words scoring at least a threshold T with
the query word according to a substitution matrix δ.

2. Scan the database for entries containing any word from
this list: call these the seeds.

3. The seeds are extended in both directions in an attempt
to boost the alignment score, without considering inser-
tions or deletions. Stop extending when score falls below
a cutoff.

4. Gapped alignment between the query and database se-
quence using a variant of Smith-Waterman to find statis-
tically significant matches.

Expected value E(S) is the number of alignments with scores
greater than or equal to S that are expected to occur by chance
in a search. E(S) = Kmne−λS where K is constant, λ scales
for the matrix δ, m is query size and n is database size. Bit
scores normalize the differences of database size and scoring
matrices: S′ = (λS−lnK)

ln2 , so E(S′) = mn2−S
′
.

Progressive Multiple Alignment

For k sequences there are 2k − 1 ways to extend a sequence, so
dynamic programming takes time Θ(2knk) and space Θ(nk) for
sequences of length n. This is prohibitively large, so instead:

1. Compute pairwise sequence Hamming distance normalized
by sequence length.

2. Use this distance matrix to create a guide tree in which
closer sequences are aligned first.

Inter-pair alignment is done by trying all different possibilities
at a position (including gaps) and picking the best or just as-
sume such things do not match.

Parsimony Trees

Rooted trees are bifurcating if all non-leaves have degree 3.

If the length of the path from the root to any leaf is the same,
it is said to be ultrametric. The biological interpretation is that
it obeys a molecular clock.

If the length of a tree edge is the hamming distance between
its endpoints we can define parsimony score as the sum of edge
weights. We seek trees with the lowest possible parsimony score,
confusingly called the maximum parsimony tree.

Columns in sets of aligned sequences are parsimony-informative
if they contain at least two nucleotides and at least two of those
nucleotides occur at least twice!

2

Fitch’s Algorithm

The small parsimony problem is to obtain a labelling of internal
tree nodes that minimises hamming-distance parsimony with
respect to the pre-labelled leaf nodes. This algorithm solves
the problem for trees with leaves of length 1. To generalize it,
run it on each sequence index separately and concatenate the
resulting trees.

1. For leaf nodes i, set Ri = {labeli}

2. From leaves to the root consider internal node i with chil-

dren j and k. Ri =

{
Rj ∪Rk Rj ∩Rk = ∅
Rj ∩Rk otherwise

3. From root to leaves consider node j with parent i. ri ={
ri ri ∈ Rj
some element of Rj if root node or ri /∈ Rj

If there are k possible values for each sequence position and n
nodes, complexity is Θ(kn).

Sankoff’s Algorithm

The weighted small parsimony problem generalizes the small
parsimony problem beyond hamming distance to include a ma-
trix δ indicating the cost of pairwise mutations. This algorithm
solves the problem for trees with leaves of length 1, but can
be generalized as before. Quantity st(v) denotes the minimum
parsimony score of the sub-tree rooted at v if v has character t.

1. For leaf nodes i, set st(i) = cond(labeli = t, 0,∞)

2. From leaves to the root consider internal node i with chil-
dren j and k. st(i) = mini(si(j) + δi,t) +mini(si(k) + δi,t)

3. The root l gets rl = argmini(si(l)) and sub-trees recur-
sively obtain the characters that lead to that minimum
score

If there are k possible values for each sequence position and n
nodes, complexity is Θ(kn).

Generalized Parsimony Method

Given n aligned sequences containing c parsimony-informative
columns:

1. S(g) = 0

2. For each distinct graph g with n nodes:

(a) For each of the c columns:

i. Label the graph leaves with the letters of the col-
umn

ii. Use Fitch’s or Sankoff’s algorithm to compute a
minimum parsimony tree and add its parsimony
score to the total score for this graph S(g)

3. The best graph is argmaxg(S(g))

Assume there are k possible values for a sequence position and
g suitable graphs with n nodes. Time complexity is Θ(gckn).

Ultrametrics

An ultrametric space has a distance measure d that satisfies
d(x, y) ≥ 0, d(x, y) = 0 ⇐⇒ x = y, d(x, y) = d(y, x) and
crucially d(x, z) ≤ max(d(x, y), d(y, z)).

UPGMA

Unweighted Pair Group Method with Arithmetic Mean. This
computes the distance between clusters using average pairwise
distance. Its weakness is that it produces an ultrametric tree
that implicitly assumes a constant molecular clock (differences
between two sequences are proportional to the time to the last
common ancestor).

1. For each sequence xi, create Ci = {xi}

2. Compute pairwise cluster distance matrix D based on se-
quence distance

3. While more than one cluster remains:

(a) Find two clusters Ci,Cj with minimum distance dij
(b) Add a vertex to the tree connecting those of Ci and

Cj with height dij
2

(c) Replace them with Ck = Ci ∪ Cj such that Dkl =
Dil|Ci|+Djl|Cj |
|Ci|+|Cj | : this ensures the new cluster distance

is the unweighted arithmetic mean of the distances to
the constituent sequences.

3-Way Tree Reconstruction

We wish to determine inter-sequence tree distances that match
the observed inter-sequence string distances. For 3 leaved trees
(i,j,k with common node c) this can be done exactly using the
string distance matrix D:

dic =
Dij +Dik −Djk

2

3

djc =
Dij +Djk −Dik

2

dkc =
Dki +Dkj −Dij

2

Fitch Margoliash

Computes an unrooted tree with sequences at its leaves that
satisfies distance constraints, but does not assume a molecular
clock:

1. Compute pairwise cluster distance matrix D based on se-
quence distance

2. While more than three sequences remain:

(a) Find the closest sequences i and j according to D

(b) Clump all other sequences together to form K such
that DaK =

∑
k∈K Dak

|K|

(c) Solve this 3-sequence problem using exact reconstruc-
tion where the distance to K is the distance from a
new internal node to the sequences of K

(d) Replace i and j in D with node (i, j) where D(i,j)k =
Dik+Djk

2

3. Output the graph built up

Neighbour Joining

Similar to cluster analysis but also relaxes the assumption of
equal rates of molecular change among branches.

1. Initialize graph to a star topology with all r sequences
hanging off a common node

2. Compute pairwise cluster distance matrix D based on pair-
wise sequence distance

3. If pairs remain to be joined:

(a) Based on the current distance matrix compute Qij =
(r − 2)Dij −

∑r
k=1Dik −

∑r
k=1Djk

(b) Find the pair of sequences i, j that is closest according
to Q and create a node e in the graph joining these
two

(c) Calculate the distance of sequences i and j to this new
node: Die = 1

2Dij + 1
2(r−2) (

∑r
k=1Dik −

∑r
k=1Djk)

and symmetrically for Dje

(d) Calculate the distance of all other sequences to the
new node: Dek = 1

2 (Dik −Die) + 1
2 (Djk −Dje)

(e) Recursively join neighbours after removing i and j
from the distance matrix as they are covered by the
consolidated node e

4. Otherwise output just the two pairs joined by an edge in
the obvious way

To make this fast the sub-terms Ri =
∑r
k=1Dik can be com-

puted and cached at the start of an iteration. This leads to a
time complexity of Θ(r3).

Tree Improvements

Can greedily attempt to improve the initial estimate for a ge-
netic tree by branch swapping and testing if we have created
a more parsimonious tree. This can be done by tree bisection
and reconnection:

1. Bisect a tree along a branch to obtain two sub-trees

2. Connect the sub-trees by joining a pair of branches, one
per sub-tree

May also use sub-tree pruning and regrafting or nearest neigh-
bour interchanges.

Hypothesis Testing

Bootstrapping techniques can be used to check the reliability
of an inferred tree. A tree is inferred from the sample data
and instances of identical trees are looked for to support their
correctness. Data generation techniques include sampling with
replacement (choose some columns and repeat them a number
of times and sampling without replacements (take a subset of
a permutation of the input sample columns).

Multiple possible internally labelled trees can be selected from
based on the maximum likelihood criterion. Likelihood L is
defined such that L ∝ P (data on tree|hypothesis). Tree likeli-
hood is computed recursively:

1. For nodes i above leaf nodes labelled with symbols j
and k with distances t1 and t2 respectively, L(i) =
Plabel(i),j(t1)Plabel(i),k(t2)

2. For other nodes i above child nodes j and k
with distances t1 and t2 respectively, L(i) =∑
y∈Labels

∑
z∈Labels L(relabel(j, y))L(relabel(k, z))Plabel(i)y(t1)Plabel(i)z(t2)

We can also evaluate the likelihood of an unlabelled tree with
respect to some sequence of length n:

1. Assign the symbols of the sequence to the leaves of the
tree.

4

2. For each sequence index i:

(a) Lunlabelled(i) = 0

(b) For each assignment of letters to internal node la-
bellings of the tree:

i. Increment Lunlabelled(i) by the likelihood of this
labelled tree

3. Final likelihood Lunlabelled =
∏n
i=1 Lunlabelled(i) by as-

sumption of symbol independence

It may be useful to evaluate the probabilities in logarithmic
space for practical reasons as they are typically quite small.

Markov Models

Some Markov processes may not allow us to observe the states
transitioned through directly. We can infer information from
these based on their emissions. The state space is given by the
set K and the emission set by D. Transition probabilities are
stored in the matrix A of size |K| × |K| and emission probabil-
ities in E of size |K| × |D|.

A parse is a sequence of states π recovered from a sequence
of emissions x. Parse likelihood is given by P (π, x) =∏N
i=1 aπi−1πi

eπixi
.

Viterbi Algorithm

To solve the decoding problem we need to obtain, given knowl-
edge of the HMM, the sequence of states π that maximises the
probability of generating the observed emissions x of length n.
The essential trick is use dynamic programming with Vk(i) stor-
ing the probability of the most likely sequence of states ending
at state πi = k:

1. V0(0) = 1 (where 0 is an imaginary first position)

2. ∀k > 0.Vk(0) = 0

3. Ptrj(i) = Nil

4. For each index i from 1 to n and state j:

(a) Vj(i) = ej(xi)maxk(akjVk(i− 1))

(b) Ptrj(i) = argmaxk(akjVk(i− 1))

5. Now the optimal probability is maxk(Vk(n)) and the chain
of states that give that sequence begins in argmaxk(Vk(n))

Time complexity is Θ(|K|2n) and space complexity is Θ(|K|n).
Again in practice you will need to work in logarithmic space to
prevent small values experiencing loss of precision.

Forward Algorithm

To solve the evaluation problem we need to obtain, given knowl-
edge of the HMM, the likelihood of the observed sequence of
emissions x of length n. Again we use dynamic programming
where fk(i) stores the probability of the emission sequence such
that πi = k:

1. f0(0) = 1 (where 0 is an imaginary first position)

2. ∀k > 0.fk(0) = 0

3. For each index i from 1 to n and state j:

(a) fj(i) = ej,xi

∑
k fk(i− 1)ak,j

4. Now the final probability is
∑
k fk(n)ak,0 where ak,0is the

probability that the terminating state is k.

Time complexity is Θ(|K|2n) and space complexity is Θ(|K|n).
Again in practice you will work in logarithmic space.

K-Means Clustering (Lloyd’s Algo-
rithm)

1. Choose k random center points in n dimensional cluster
space

2. Until data points stop moving between clusters:

(a) Put all points into the cluster they are nearest accord-
ing to some distance metric

(b) Calculate new cluster centre points from clustered
pointsX by CentrePoint(X)k∈Zn

=
∑

x∈X xk

|X| and use
them as new centre point seeds

This has a time complexity of only O(m) for m points on aver-
age but has a worst case of 2Ω(

√
m). You need to choose k and

it gives non-deterministic heuristic results. You can measure
cluster quality with cluster diameter vs. inter-cluster distance,
distance between the cluster members and the cluster centre or
by repeating runs and checking how often cluster reoccur.

Hierarchical Clustering

1. Put every point to be clustered in its own cluster

2. While more than k clusters remain, merge those clusters
with the smallest inter-cluster distance

Again you need to know k. Time complexity is Θ(m) for m
points but there is no statistical foundation to this algorithm.

5

Markov Clustering

As input this algorithm takes a m vertex problem represented
as a n× n adjacency matrix A and normalises each column to
obtain the stochastic matrix M . Now:

1. While the network entropy is changing:

(a) M := Mk (expansion) and mij := (mij)
r (inflation):

this simulates a random walk

Network Reconstruction

For acyclic digraphs, there is exactly one minimal graph that
satisfies an accessibility list Acc: this is called the most
parsimonious network compatible with the list. It is de-
fined by V (Gparsimonous) = {v|∃i.v ∈ Acc(i)} and ∀i ∈
V (Gparsimonous).Adj(i) = Acc(i)\ ∪j∈Acc(i) Acc(j). This can
be defined as an algorithm in the obvious way with time com-
plexity Θ(nEj(|Adj(j)|)Ej(|Acc(j)|)) for graphs of n nodes.

In order to extend this to cyclic graphs, we first apply a strongly
connected components analysis to identify cycles and cycle-like
things and replace them with single aggregated nodes. An al-
gorithm based on the corollary that two nodes i and j are in
the same strong component iff i ∈ Acc(j) and j ∈ Acc(i) is as
follows:

1. For each node i in V (G):

(a) If Component(i) has been defined continue

(b) Add a node x with AccG∗(x) = ∅ to G∗
(c) For each node j in {x} ∪ {j|∀j ∈ Acc(i).i ∈ Acc(j)}:

i. Set Component(j) = x

2. For each node i in V (G∗):

(a) Set AccG∗(i) = ∅
(b) For each node j in Acc(i):

i. If Component(i) 6= Component(j) ∧
Component(j) /∈ AccG∗(Component(i)):
A. Add Component(j) to AccG∗(Component(i))

The second step just recovers the accessibility list of G∗from
that of G. The first step is responsible for assigning the actual
strongly connected component nodes.

Gillespie Algorithm

This is a stochastic simulation algorithm for reactions. Given
a list of reaction rates ai(x) in terms of a vector x that stores
the quantity of reactant molecules in the environment:

1. Set x to the initial reactant quantities.

2. Repeatedly:

(a) Find a0 =
∑
j aj(x)

(b) Pick a random quantity δt from Exp(a0)

(c) Pick a reaction number r from Uniform(0, 1)

(d) Pick reaction j such that
∑j−1
i=1 ai < ra0 ≤

∑j
i=1 ai

(e) Execute reaction j, updating x and increasing simu-
lated time by δt

Stochastic simulation gives you more detailed information
about how a system evolves than analytic methods, and is often
more tractable.

6

