
Agents Any device that can sense and act
upon its environment

 Rational: for any percept
sequence acts so as to max.
expected performance

 Autonomous: behaviour depends
on own percept sequence

 Reflex: act on current percept

Search Start state, actions (with known
results), goal test function

 Test the root to see if it is a goal,
if not then expand, move to one
of the resulting states: states not
yet expanded called fringe

Breadth-
First

Complete, optimal if path cost
non-decreasing function of depth,
memory and time complexity
O(xd) for shortest depth d

Uniform
Cost

Always expand node with lowest
path cost first. Optimal if path
cost of node is at least that of its
parent node

Depth-
First

Not complete or optimal, memory
O(xd) and time O(xd) for depth d

 Good if there are many solutions
Back-
tracking

If each node knows how to
generate the next possibility,
memory is O(d). Can optimise by
having undoable actions which
modify a shared state

Depth-
Limited

As depth-first but complete if a
solution is within the depth

Iterative
Deep.

Complete and optimal, memory
O(xd), time still exponential but
less than naïve breadth-first since
most nodes are in bottom layer

Bi-
direction

If methods are O(xd) then we can
convert this to O(2xd/2), but might
not be possible esp. if > 1 goal:
also need to store all nodes of
one of the searches to test meet

Graph Have a closed list of expanded
nodes, never add a node to it
twice. Time and space complexity
proportional to state space size
(esp. problem with depth-first),
may discard new state that is
better than an older one

Best-
First

Expand nodes using ordering of
evaluation function. Can use
heuristic (w/ h(goal) = 0) for
greedy search, but time and
space complexity O(xd) and not

optimal or complete!
A* f(n) = p(n) + h(n) with known

path cost, p and estimated cost of
path to goal state, h

 Admissible: if h(n) never
overestimates the cost of best
path from n to a goal

 Optimal if h is admissible (show
this by contradiction)

A* Graph Monotonic: if f(n’) ≥ f(n) for n’
following n, can use pathmax
f(n’)=max{f(n), p(n’) + h(n’)}.
Same as triangle inequality,
implies admissibility

 Optimal if h is monotonic since
everything with f(n’’) < fopt gets
explored first, then one or more
such things get found

 Complete provided branching
factor finite and there is a c st.
each operator has a cost at least c

 No other optimal algorithm that
constructs paths from the root
can guarantee to examine fewer
nodes, but still has exponential
complexity unless |h(n)-h’(n)| ≤
O(log[h’(n)])

IDA* Iterative deepening with A*
 Does not require queue of nodes:

space O(p) where p is the longest
path length, time taken depends
on the # of values h can take

 Heart is a contour function

which returns node found (if any)
and minimum f limit required to
progress at least 1 node

RBFS Remember the f(n) for the best
alternative node we’ve seen on
the way to current node n’. If f(n’)
> f(n) then go back and explore
the best alternative, replacing f
cost of every node in path with
f(n’) to remember path goodness
(note: must ensure f remains
monotonic under replacement)

 Optimal if h admisable, memory =
O(xd), time can be exponential

Games Can be modelled with search
MiniMax If A is rational he plays to reach a

position with maximum utility, if B
is rational she plays to minimise
the utility available to A

 Generate complete tree and work

from leaves upwards computing
utility: has time O(xp) for p-ply

 Introduce cutoff test, evaluation
function to limit tree generated

 Evaluation f typ. weighted linear
Alpha-
Beta
Pruning

Alpha: highest utility seen so far
for Max, Beta: lowest utility seen
so far for Min. If α ≥ β at any
point we can stop the search

Max(alpha, beta, node) {

 For (successor s) { Alpha =

max_of(alpha, min(alpha, beta, s))

 Return beta if alpha >= beta }

 Return alpha

 Try good moves first: if ordering
perfect then O(xp/2), O(x3p/4) for
realistic x and random order

Constraint
Satisfaction

Set of variables V1,V2..Vn

Domain Di for each Vi
Constraints C1,C2,..Cm
State: assignment of values to
variables, consistent if violates
no constraints, complete if
assigns a value to all variables

 Binary constraints: with finite
domains this is sufficient even
for higher order constraints

Backtrack.
Search

Depth first, single variable at a
time, backtrack when no
assignment is possible

 Minimum remaining values:
assign such variables first

 Degree heuristic: choose the
variable involved in the most
constraints on yet unassigned
variables (good tie breaker)

 Least constraining value:
choose variable value that
gives max neighbour freedom

Forward
Checking

When we assign a value to a
variable, delete the value from
the current domains of its
neighbours (good with MRV)

Constraint
Propagation

Arc consistency: ij is

consistent if for all assignments
to i, can assign something to j

 Enforce this each time a
variable is assigned (may need
cascade): called AC-3, O(n2d3)

 K-consistency: if we have k-1
variables w/ a consistent
assignment then we can find a
consistent assignment to any

kth variable
 Strong k-consistency: if k

consistent and strong k-1
consistency. Find assignment
in O(nd), n = var. count

Back-
jumping

Backtracks to the conflict set:
set of assigned variables
connected to x

 Accumulate conflicts as we
make assignments: when we
cause the trimming of another
vars domain we join their set,
if remove last then their
conflict set joins ours

 Forward checking makes this
redundant, but can redefine
conflict set to be collection of
preceding variables causing x
not to have a valid assignment
set: when backtracking to x
from x’ union x set with conflict
set of x’ (without x itself)

Planning Planners can add actions
anywhere, their state descriptions
are not complete, assume
element independence

STRIPS States: conjunctions of ground
literals with no functions

 Goals: conjunctions of literals with
existentially quantified free vars.

 Operators: tuples of description
(name), precondition (conjunction
of positive literals), effect
(conjunction of literals)

 Plans: tuples of set of steps
(operator instantiations), ordering
constraints between steps,
variable bindings (to variables or
constants), causal links (which
preconditions of steps our steps
achieve)

 Initial plan: just has Start (effects:
start state) and Finish
(preconditions: goal state) steps
and Start < Finish

 Complete: every precondition is
achieved by a causal link with
associated order, unless some
step exists that cancels it

 Consistent: variable binding is a
function and ordering consistent

Threats A step that might invalidate a
precondition: can try and

eliminate with ordering constraint
 Order before causal link is

demotion, else promotion
 In general, may have to introduce

other steps: implies backtracking

Objects Frames or semantic networks:
objects with relationships

 Subclass, instance relationships
control inference paths

 Frames have slots with slot
values, starred slots are defaults
for instances / subclasses

 MI, frames as slot values etc..
Rule
Systems

If-then rules (implication), with
facts which the system “knows”

Forward
Chaining

Find rules that can fire based on
current working memory, choose
one to fire, update WM until halt

Backward
Chaining

Find the goal and find rules that
would achieve it, backtrack if
you have to make a choice and
turn out to be wrong

Conflict
Resolution

Rule choice affects the outcome,
avoid inferring useless info

 Prefer specifics, recent facts
Reason
Maint.

When facts removed from WM
need to remove old inferences

Neural
Networks

Feature vector: list of information,
continuous/discrete

 Training sequence: list of pairs of
features with Ω

 Hypothesis: function from feature
vectors to Ω

 Hypothesis space: hypotheses
available to learning algorithm L

 Target concept: the perfect
hypothesis

Generaliz. Ability of L to pick hypothesis which
is close to concept

 Give a distribution P to X*Ω
 Assume examples are IID
 Measure error L(h, (x, y)), then set

er(h) to be expected L
Perceptron)sgn()(0wxwxh T

ii xR max , describes hypersphere

which training data lies in
Primal Each round, for each

misclassification ii xyww

 ,
2

00 Ryww i where yi is sign of

the error (-1 = too big)
 Novikoff: this will converge in not

more than 22)(

R mistakes if linearly

separable and exists a normalized
hyperplane for all i with

)(0wxwy i

T

i

Dual Form If η = 1 can characterise final

weights as

m

i

iii xy
1

 , and we can

rewrite the hypothesis as

))(sgn()(0

1

wxxyxh T

i

m

i

ii

 Core training loop is as below:
 For (example I in s)

{ if (misclassification) {

ai++; w0 += …; } }

 Can map to a bigger space by
setting up a Φ, hypothesis is:

))()(sgn()(0

1

wxxyxh T

i

m

i

ii

 The sum is potentially smaller, but
the Φ multiplication may be
calculated multiple times

 A kernel is a function K such that

)()(),(yxyxK T
 : design this to

be calculated easily, and so that d
(dimension) does not effect kernel
calculation: makes h easy

Gradient
Descent

Extend x, w with 1, w0 for bias
Define a measure of error E for
weights, involving sample space

 Take random initial w and iterate:

iww

wE

ii ww

)(

1 : if E has a global

minima we fall into it
 For each node j:)(j

iw is weight from

input i, i i

j

ij zwa)(is activation

for j, g is activation function,
)(jj agz is output

m

p w

wE

w

wE p

1

)()(

 for example p

Forward
Propagat.

Place p at the inputs and get aj, zj
for all nodes j

Backward
Propagat.

(j)
i

j

j

p

(j)
i

p

w

a

a

)w(E

w

)w(E

iji i

(j)

iwj zδ))zw((δ (j)
i

Output
Node

)('
)()()(

jz

wE

a

z

z

wE

a

wE

j ag
j

p

j

j

j

p

j

p

Input
Node

Where k are the nodes which
connect back to us, we can say:

k

k

jkj

k k

j

k

jki i

k

iak

k

a

a

k

k

a

a

a

wE

a

wE

j

wag

agwzw
j

j

k

j

k

k

p

j

p

)(

)()(

)()(

)('

)(')(

And now we have enough information to perform
the algorithm for training outlined above

