
Agents Any device that can sense and act 
upon its environment 

 Rational: for any percept 
sequence acts so as to max. 
expected performance 

 Autonomous: behaviour depends 
on own percept sequence 

 Reflex: act on current percept 
 

Search Start state, actions (with known 
results), goal test function 

 Test the root to see if it is a goal, 
if not then expand, move to one 
of the resulting states: states not 
yet expanded called fringe 

Breadth-
First 

Complete, optimal if path cost 
non-decreasing function of depth, 
memory and time complexity 
O(xd) for shortest depth d 

Uniform 
Cost 

Always expand node with lowest 
path cost first. Optimal if path 
cost of node is at least that of its 
parent node 

Depth-
First 

Not complete or optimal, memory 
O(xd) and time O(xd) for depth d 

 Good if there are many solutions 
Back-
tracking 

If each node knows how to 
generate the next possibility, 
memory is O(d). Can optimise by 
having undoable actions which 
modify a shared state 

Depth-
Limited 

As depth-first but complete if a 
solution is within the depth 

Iterative 
Deep. 

Complete and optimal, memory 
O(xd), time still exponential but 
less than naïve breadth-first since 
most nodes are in bottom layer 

Bi-
direction 

If methods are O(xd) then we can 
convert this to O(2xd/2), but might 
not be possible esp. if > 1 goal: 
also need to store all nodes of 
one of the searches to test meet 

Graph Have a closed list of expanded 
nodes, never add a node to it 
twice. Time and space complexity 
proportional to state space size 
(esp. problem with depth-first), 
may discard new state that is 
better than an older one 

Best-
First 

Expand nodes using ordering of 
evaluation function. Can use 
heuristic (w/ h(goal) = 0) for 
greedy search, but time and 
space complexity O(xd) and not 

optimal or complete! 
A* f(n) = p(n) + h(n) with known 

path cost, p and estimated cost of 
path to goal state, h 

 Admissible: if h(n) never 
overestimates the cost of best 
path from n to a goal 

 Optimal if h is admissible (show 
this by contradiction) 

A* Graph Monotonic: if f(n’) ≥ f(n) for n’ 
following n, can use pathmax 
f(n’)=max{f(n), p(n’) + h(n’)}. 
Same as triangle inequality, 
implies admissibility 

 Optimal if h is monotonic since 
everything with f(n’’) < fopt gets 
explored first, then one or more 
such things get found 

 Complete provided branching 
factor finite and there is a c st. 
each operator has a cost at least c 

 No other optimal algorithm that 
constructs paths from the root 
can guarantee to examine fewer 
nodes, but still has exponential 
complexity unless |h(n)-h’(n)| ≤ 
O(log[h’(n)]) 

IDA* Iterative deepening with A* 
 Does not require queue of nodes: 

space O(p) where p is the longest 
path length, time taken depends 
on the # of values h can take 

 Heart is a contour function 

which returns node found (if any) 
and minimum f limit required to 
progress at least 1 node 

RBFS Remember the f(n) for the best 
alternative node we’ve seen on 
the way to current node n’. If f(n’) 
> f(n) then go back and explore 
the best alternative, replacing f 
cost of every node in path with 
f(n’) to remember path goodness 
(note: must ensure f remains 
monotonic under replacement) 

 Optimal if h admisable, memory = 
O(xd), time can be exponential 

 

Games Can be modelled with search 
MiniMax If A is rational he plays to reach a 

position with maximum utility, if B 
is rational she plays to minimise 
the utility available to A 

 Generate complete tree and work 



from leaves upwards computing 
utility: has time O(xp) for p-ply 

 Introduce cutoff test, evaluation 
function to limit tree generated 

 Evaluation f typ. weighted linear 
Alpha-
Beta 
Pruning 

Alpha: highest utility seen so far 
for Max, Beta: lowest utility seen 
so far for Min. If α ≥ β at any 
point we can stop the search 

Max(alpha, beta, node) { 

 For (successor s) { Alpha = 

max_of(alpha, min(alpha, beta, s)) 

  Return beta if alpha >= beta } 

 Return alpha 

 Try good moves first: if ordering 
perfect then O(xp/2), O(x3p/4) for 
realistic x and random order 

 

Constraint 
Satisfaction 

Set of variables V1,V2..Vn 

Domain Di for each Vi 
Constraints C1,C2,..Cm 
State: assignment of values to 
variables, consistent if violates 
no constraints, complete if 
assigns a value to all variables 

 Binary constraints: with finite 
domains this is sufficient even 
for higher order constraints 

Backtrack. 
Search 

Depth first, single variable at a 
time, backtrack when no 
assignment is possible 

 Minimum remaining values: 
assign such variables first 

 Degree heuristic: choose the 
variable involved in the most 
constraints on yet unassigned 
variables (good tie breaker) 

 Least constraining value: 
choose variable value that 
gives max neighbour freedom 

Forward 
Checking 

When we assign a value to a 
variable, delete the value from 
the current domains of its 
neighbours (good with MRV) 

Constraint 
Propagation 

Arc consistency: ij is 

consistent if for all assignments 
to i, can assign something to j 

 Enforce this each time a 
variable is assigned (may need 
cascade): called AC-3, O(n2d3) 

 K-consistency: if we have k-1 
variables w/ a consistent 
assignment then we can find a 
consistent assignment to any 

kth variable 
 Strong k-consistency: if k 

consistent and strong k-1 
consistency. Find assignment 
in O(nd), n = var. count 

Back-
jumping 

Backtracks to the conflict set: 
set of assigned variables 
connected to x 

 Accumulate conflicts as we 
make assignments: when we 
cause the trimming of another 
vars domain we join their set, 
if remove last then their 
conflict set joins ours 

 Forward checking makes this 
redundant, but can redefine 
conflict set to be collection of 
preceding variables causing x 
not to have a valid assignment 
set: when backtracking to x 
from x’ union x set with conflict 
set of x’ (without x itself) 

 

Planning Planners can add actions 
anywhere, their state descriptions 
are not complete, assume 
element independence 

STRIPS States: conjunctions of ground 
literals with no functions 

 Goals: conjunctions of literals with 
existentially quantified free vars. 

 Operators: tuples of description 
(name), precondition (conjunction 
of positive literals), effect 
(conjunction of literals) 

 Plans: tuples of set of steps 
(operator instantiations), ordering 
constraints between steps, 
variable bindings (to variables or 
constants), causal links (which 
preconditions of steps our steps 
achieve) 

 Initial plan: just has Start (effects: 
start state) and Finish 
(preconditions: goal state) steps 
and Start < Finish 

 Complete: every precondition is 
achieved by a causal link with 
associated order, unless some 
step exists that cancels it 

 Consistent: variable binding is a 
function and ordering consistent 

Threats A step that might invalidate a 
precondition: can try and 



eliminate with ordering constraint 
 Order before causal link is 

demotion, else promotion 
 In general, may have to introduce 

other steps: implies backtracking 
 

Objects Frames or semantic networks: 
objects with relationships 

 Subclass, instance relationships 
control inference paths 

 Frames have slots with slot 
values, starred slots are defaults 
for instances / subclasses 

 MI, frames as slot values etc.. 
Rule 
Systems 

If-then rules (implication), with 
facts which the system “knows” 

Forward 
Chaining 

Find rules that can fire based on 
current working memory, choose 
one to fire, update WM until halt  

Backward 
Chaining 

Find the goal and find rules that 
would achieve it, backtrack if 
you have to make a choice and 
turn out to be wrong 

Conflict 
Resolution 

Rule choice affects the outcome, 
avoid inferring useless info 

 Prefer specifics, recent facts 
Reason 
Maint. 

When facts removed from WM 
need to remove old inferences 

 

Neural 
Networks 

Feature vector: list of information, 
continuous/discrete 

 Training sequence: list of pairs of 
features with Ω 

 Hypothesis: function from feature 
vectors to Ω 

 Hypothesis space: hypotheses 
available to learning algorithm L 

 Target concept: the perfect 
hypothesis  

Generaliz. Ability of L to pick hypothesis which 
is close to concept 

 Give a distribution P to X*Ω 
 Assume examples are IID 
 Measure error L(h, (x, y)), then set 

er(h) to be expected L 
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 Core training loop is as below: 
 For (example I in s) 

{ if (misclassification) { 

ai++; w0 += …; } } 

 Can map to a bigger space by 
setting up a Φ, hypothesis is: 
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 The sum is potentially smaller, but 
the Φ multiplication may be 
calculated multiple times 

 A kernel is a function K such that 
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 : design this to 

be calculated easily, and so that d 
(dimension) does not effect kernel 
calculation: makes h easy 

Gradient 
Descent 

Extend x, w with 1, w0 for bias 
Define a measure of error E for 
weights, involving sample space 

 Take random initial w and iterate: 
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Forward 
Propagat. 

Place p at the inputs and get aj, zj 
for all nodes j 

Backward 
Propagat. 
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Input 
Node 

Where k are the nodes which 
connect back to us, we can say: 
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And now we have enough information to perform 
the algorithm for training outlined above 
 


