
Graph
Representation

Adjacency matrix or
adjacency list per vertex

 Dense: E ≈ V2
 Sparse: E ≈ V
Searching Depth first: from any node,

investigate the whole sub-
tree before others

 Breath first: from any node
we visit all adjacent nodes
in turn before going deeper

Topological
Sort (linearize)

Output vertices in an order
such that no edge from any
vertex v to a vertex that
was output before v

 Resolves dependencies
 Solve in O(V) using depth

first search: output vertices
in reverse order of finishing
time, colour to avoid cycles

 Proof by considering colour

Minimal
Spanning Tree

A smallest-weighted subset
of the edges that connects
all nodes in the graph

 Must be a tree if cycles
have weights >= 0

Generic
Algorithm

Grow a subgraph A by
iteratively adding a safe
edge of the full graph (an
edge that ensure the
subgraph remains a subset
of some MST)

 A cut (S, V–S) is a partition
of nodes into two sets.
Given a subgraph A of G, a
cut of G respects A iff no
edge of A goes across cut

 Theorem: given a graph G
and a subgraph A that is a
subset of the MST of G, for
any cut that respects A the
lightest edge of G that
goes across the cut is safe
for A (proof by considering
that there must be some
other edge going across
the edge other than the
lightest one, show that
edge must weigh the same
as the lightest or a
contradiction occurs)

Prims
Algorithm

Force A to be a tree at
each stage: add the

shortest edge that joins a
new vertex to the tree

 Implement with priority
queue, priority = distance
from connected subset,
O(heapify+V*(extract min)
+E*(change key))

Kruskal’s
Algorithm

Allow A to be a forest
during execution: add the
shortest edge that does not
add a cycle to A

 Implement with disjoint
set, gives O(V*(make
set)+(sort E edges)+
E*((find set)+union)

Single Source
Shortest Path

δ(s,v) = shortest possible
path from s to v
d[v] = working shortest
path from s to v

Generic
Algorithm

Initially d[v] = ∞ for all v
except s, since d[s] = 0

 At end, d[v] = δ(s,v)
 Relaxation: given an edge

(u, v) of weight w set d[v]
= min(d[v], d[u] + w)

Bellman-Ford
Algorithm

Works even in the
presence of –VE edge
weights, reports –VE cycles

 Iteratively relax all edges V
times: O(VE). Add O(E)
post-processing phase: if a
relaxation occurs here then
a –VE cycle is present

 Proof by considering that a
shortest path with more
than V edges in it must
contain a cycle, and after i
iterations d[u] is the length
of shortest path with at
most i edges

Dijkstra’s
Algorithm

Cannot deal with –VE edge
weights or report cycles

 Maintain a set S of vertices
to which shortest paths
have been discovered, at
each stage add the vertex

u  S with smallest d[u]
until V = S

 Implement with a priority
queue, u priority = d[u].
Gives O(V*(extract
min)+E*(change key))

All-Pairs
Short Path

Either run single source
algorithm on all pairs or:

Matrix
Method

Let L(m) by the matrix of
shortest paths that contain no
more than m edges, then W
(adjacency) = L(1)

))(min,min(,,
1

,

)1(

, jk

n

ki
Nk

n

ji

n

ji wLLL 




)(min ,,
1

)1(

, jk

n

ki
Nk

n

ji wLL 




 This must converge to L after
N-1 steps, due to cycling, so:

  LLL NN ...1

 Can map to matrix notation:

WLL nn .1 

 Now we can repeatedly
“square” L to discover the first
Lm where m >= n-1: O(V3lgV)

Floyd-
Warshall

Implementation not lectured,
has costs of O(V3)

Johnson’s
Algorithm

Extension of Dijkstra’s
algorithm that allows for
negative weight edges

 Adds a new node s with zero
weight edges from it to all
other nodes, and runs Bellman-
Ford to check for –VE cycles
and find h(v) = δ(s,v). Change
weights such that: w’(u,v) =
w(u,v) + h(u) – h(v) (now any
path through the graph will be
weighted by the same amount
that gets rid of –VE edges since
w’(u, v) + w’(v, w) = w(u, v) +
h(u) + w(v, w) – h(w) and
clearly h(u) + w(u,v) >= h(v)).
Then run Dijkstra for each
node in the graph to find paths,
hence has O(V2*(extract
min)+V*E*(change key))

Maximum
Flow

Determine the maximum flow
between a source and sink
(taking weights as capacities)

Generic
Algorithm

Flow network is a graph with a
source, sink, capacity function

c : (u, v)  N0 and flow f: (u,v)

 Z is such that f(u,v) <=

c(u,v), f(u,v) = -f(v,u) and flow
in = flow out for all vertex

 Residual capacity cf(u,v) =
c(u,v) – f(u,v) is the extra
amount of flow that can be
pushed through that edge

 Residual network is the graph
obtained by taking edges with
cf > 0 and labelling them with
it (it is itself a flow). An
augmenting path is a path from
source to sink in this network,
and the residual capacity is the
maximum amount of flow we
can push through it

 Compute the residual network,
find an augmenting path and
push the residual capacity
through this path and repeat
while possible (note that this
may not converge quickly or at
all in general)

Edmonds-
Karp
Algorithm

Choose the augmenting path
with the smallest number of
edges: O(VE2)

Bipartite
Graph
Matching

Matching is a collection of
edges such that each vertex is
included in at most one of the
selected edges

 Maximal matching is one such
that if any edge not in it is
added, it stops being matching

 Maximum matching is one that
contains the largest possible
number of edges (poss. many)

 We can solve by recasting it as
a maximum flow problem: add
a edge with unit capacity from
a source to everything in one
part of the graph and to a sink
to everything in the other part:
since flows must be integers
the result of the previous algo.
will be a maximum matching!

 Alternating path: path whose
edges are alternately matched
and unmatched

 Augmenting path: alternating
path which starts and ends on
unmatched vertices

 Matching is maximum iff there
is no augmenting path in it

Segment
Intersectio
n

Given segments p1p2 and p3p4
determine whether they
intersect at any point

 Cross product: sign of result
tells you what side of the vector
the other occurs on

 Check p1 and p2 against p3p4:
give up if they don’t lie on
opposite sides. Check p3 and p4
against p1p2: if they lie on
different sides then we have an
intersection! If a cross product
is 0 at any point then must do a
check to see if the collinear
point lies on segment

Polar
Coordinate
Sort

Can improve the simple minded
angle comparison by replacing
it with cross product!

 Can eliminate some points of
convex hulls early by checking
if they are within the polygon
defined by the points with
{min, max} {x, y} coordinate

Graham’s
Scan

Let p0 = point with lexically
lowest (y, x) value, sort other
points by polar angle with p0:

1. S.push(p0)
2. S.push(p1)
3. S.push(p2)
4. For i = 3 to M:

a. While (angle
between
S.nextToTop,
S.top and pi
makes a non-left
turn) do S.pop

b. S.push(pi)
 Note that this takes care of the

boundary case where two
consecutive points are collinear

 Dominated by sort, so O(VlgV)
Jarvis’s
March

Start from the bottommost
leftmost point and choose the
point with the minimum polar
angle w.r.t. the current point as
our next current point until we
reach one with topmost y. Then
do the same from the
bottommost rightmost point
and maximum angle, and fix up
flat tops / flat bottoms. Has
O(Vh) where h is the number of
vertices in the convex hull

