
Graph 
Representation 

Adjacency matrix or 
adjacency list per vertex 

 Dense: E ≈ V2 
 Sparse: E ≈ V 
Searching Depth first: from any node, 

investigate the whole sub-
tree before others 

 Breath first: from any node 
we visit all adjacent nodes 
in turn before going deeper 

 

Topological 
Sort (linearize) 

Output vertices in an order 
such that no edge from any 
vertex v to a vertex that 
was output before v 

 Resolves dependencies 
 Solve in O(V) using depth 

first search: output vertices 
in reverse order of finishing 
time, colour to avoid cycles 

 Proof by considering colour 
 

Minimal 
Spanning Tree 

A smallest-weighted subset 
of the edges that connects 
all nodes in the graph 

 Must be a tree if cycles 
have weights >= 0 

Generic 
Algorithm 

Grow a subgraph A by 
iteratively adding a safe 
edge of the full graph (an 
edge that ensure the 
subgraph remains a subset 
of some MST) 

 A cut (S, V–S) is a partition 
of nodes into two sets. 
Given a subgraph A of G, a 
cut of G respects A iff no 
edge of A goes across cut 

 Theorem: given a graph G 
and a subgraph A that is a 
subset of the MST of G, for 
any cut that respects A the 
lightest edge of G that 
goes across the cut is safe 
for A (proof by considering 
that there must be some 
other edge going across 
the edge other than the 
lightest one, show that 
edge must weigh the same 
as the lightest or a 
contradiction occurs) 

Prims 
Algorithm 

Force A to be a tree at 
each stage: add the 

shortest edge that joins a 
new vertex to the tree 

 Implement with priority 
queue, priority = distance 
from connected subset, 
O(heapify+V*(extract min) 
+E*(change key)) 

Kruskal’s 
Algorithm 

Allow A to be a forest 
during execution: add the 
shortest edge that does not 
add a cycle to A 

 Implement with disjoint 
set, gives O(V*(make 
set)+(sort E edges)+ 
E*((find set)+union) 

 

Single Source 
Shortest Path 

δ(s,v) = shortest possible 
path from s to v 
d[v] = working shortest 
path from s to v 

Generic 
Algorithm 

Initially d[v] = ∞ for all v 
except s, since d[s] = 0 

 At end, d[v] = δ(s,v)  
 Relaxation: given an edge 

(u, v) of weight w set d[v] 
= min(d[v], d[u] + w) 

Bellman-Ford 
Algorithm 

Works even in the 
presence of –VE edge 
weights, reports –VE cycles 

 Iteratively relax all edges V 
times: O(VE). Add O(E) 
post-processing phase: if a 
relaxation occurs here then 
a –VE cycle is present 

 Proof by considering that a 
shortest path with more 
than V edges in it must 
contain a cycle, and after i 
iterations d[u] is the length 
of shortest path with at 
most i edges 

Dijkstra’s 
Algorithm 

Cannot deal with –VE edge 
weights or report cycles 

 Maintain a set S of vertices 
to which shortest paths 
have been discovered, at 
each stage add the vertex 

u  S with smallest d[u] 
until V = S 

 Implement with a priority 
queue, u priority = d[u]. 
Gives O(V*(extract 
min)+E*(change key)) 

 



All-Pairs 
Short Path 

Either run single source 
algorithm on all pairs or: 

Matrix 
Method 

Let L(m) by the matrix of 
shortest paths that contain no 
more than m edges, then W 
(adjacency) = L(1) 
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 This must converge to L after 
N-1 steps, due to cycling, so: 

  LLL NN ...1  

 Can map to matrix notation: 

WLL nn .1   

 Now we can repeatedly 
“square” L to discover the first 
Lm where m >= n-1: O(V3lgV) 

Floyd-
Warshall 

Implementation not lectured, 
has costs of O(V3) 

Johnson’s 
Algorithm 

Extension of Dijkstra’s 
algorithm that allows for 
negative weight edges 

 Adds a new node s with zero 
weight edges from it to all 
other nodes, and runs Bellman-
Ford to check for –VE cycles 
and find h(v) = δ(s,v). Change 
weights such that: w’(u,v) = 
w(u,v) + h(u) – h(v) (now any 
path through the graph will be 
weighted by the same amount 
that gets rid of –VE edges since 
w’(u, v) + w’(v, w) = w(u, v) + 
h(u) + w(v, w) – h(w) and 
clearly h(u) + w(u,v) >= h(v)). 
Then run Dijkstra for each 
node in the graph to find paths, 
hence has O(V2*(extract 
min)+V*E*(change key)) 

 

Maximum 
Flow 

Determine the maximum flow 
between a source and sink 
(taking weights as capacities) 

Generic 
Algorithm 

Flow network is a graph with a 
source, sink, capacity function 

c : (u, v)  N0 and flow f: (u,v) 

 Z is such that f(u,v) <= 

c(u,v), f(u,v) = -f(v,u) and flow 
in = flow out for all vertex 

 Residual capacity cf(u,v) = 
c(u,v) – f(u,v) is the extra 
amount of flow that can be 
pushed through that edge  

 Residual network is the graph 
obtained by taking edges with 
cf > 0 and labelling them with 
it (it is itself a flow). An 
augmenting path is a path from 
source to sink in this network, 
and the residual capacity is the 
maximum amount of flow we 
can push through it 

 Compute the residual network, 
find an augmenting path and 
push the residual capacity 
through this path and repeat 
while possible (note that this 
may not converge quickly or at 
all in general) 

Edmonds-
Karp 
Algorithm 

Choose the augmenting path 
with the smallest number of 
edges: O(VE2) 

 

Bipartite 
Graph 
Matching 

Matching is a collection of 
edges such that each vertex is 
included in at most one of the 
selected edges 

 Maximal matching is one such 
that if any edge not in it is 
added, it stops being matching 

 Maximum matching is one that 
contains the largest possible 
number of edges (poss. many) 

 We can solve by recasting it as 
a maximum flow problem: add 
a edge with unit capacity from 
a source to everything in one 
part of the graph and to a sink 
to everything in the other part: 
since flows must be integers 
the result of the previous algo. 
will be a maximum matching! 

 Alternating path: path whose 
edges are alternately matched 
and unmatched 

 Augmenting path: alternating 
path which starts and ends on 
unmatched vertices 

 Matching is maximum iff there 
is no augmenting path in it 

 

Segment 
Intersectio
n 

Given segments p1p2 and p3p4 
determine whether they 
intersect at any point 

 Cross product: sign of result 
tells you what side of the vector 
the other occurs on  



 Check p1 and p2 against p3p4: 
give up if they don’t lie on 
opposite sides. Check p3 and p4 
against p1p2: if they lie on 
different sides then we have an 
intersection! If a cross product 
is 0 at any point then must do a 
check to see if the collinear 
point lies on segment 

Polar 
Coordinate 
Sort 

Can improve the simple minded 
angle comparison by replacing 
it with cross product! 

 Can eliminate some points of 
convex hulls early by checking 
if they are within the polygon 
defined by the points with 
{min, max} {x, y} coordinate 

Graham’s 
Scan 

Let p0 = point with lexically 
lowest (y, x) value, sort other 
points by polar angle with p0: 

1. S.push(p0) 
2. S.push(p1) 
3. S.push(p2) 
4. For i = 3 to M: 

a. While (angle 
between 
S.nextToTop, 
S.top and pi 
makes a non-left 
turn) do S.pop 

b. S.push(pi) 
 Note that this takes care of the 

boundary case where two 
consecutive points are collinear 

 Dominated by sort, so O(VlgV) 
Jarvis’s 
March 

Start from the bottommost 
leftmost point and choose the 
point with the minimum polar 
angle w.r.t. the current point as 
our next current point until we 
reach one with topmost y. Then 
do the same from the 
bottommost rightmost point 
and maximum angle, and fix up 
flat tops / flat bottoms. Has 
O(Vh) where h is the number of 
vertices in the convex hull 

 


