
Using Synchronisation

Concurrency strategy: specify code to parallelise, ensure safety,
reduce contention, reduce overheads.

Kernel threads: OS managed, expensive, balanced across
CPUs, handle blocking.

User threads: language implemented, multiplexed, fast cre-
ation, don’t handle blocking or parallelism.

Commands: things to be done.

Executors: things that arrange execution of commands:

• Direct - synchronous

• Locked - synchronous, one at a time

• Queued - synchronous, one at a time

• Pooled - asynchronous, bounded # of threads

• Threaded - asynchronous, unbounded # of threads

Thread pools have a number of threads and a shared work
pool. Many options to deal with queue overflow (blocking, ex-
ception, synchronous execution, discard existing item). Work
items must use asynchronous I/O.

Can use per-worker thread queue to allow task thread-affinity
for I/O resumption. Queue underflow motivates work stealing
pools.

Two lock concurrent queue: head always points to a dummy
node, separate locks protect the push_tail and pop_head oper-
ations.

Reducing contention:

• Confinement: guarantee some objects remain thread-local
(no locking)

• Accept stale/changing data

• Copy-on-write

• Increase locking granularity: but beware of deadlock and
overhead

Implementing Synchronisation

Coherency requires that there is at most one dirty version of a
cache line.

Uniprocessor: invalid/clean/dirty.

MSI: modified/shared/invalid with new exclusive read signal.

MESI: MSI+exclusive for cache lines clean but private to reduce
bus noise upon write.

MOESI: MESI+owned where lines may be modified despite
other CPUs having the line shared (must transmit changes).

ccNUMA:

• CPUs and local memory grouped into nodes

• Per-node directories provide a serialization point, track
which processors have dirty/clean copies of lines

• Read/write requests are issued to the memory block home
node which can forward requests to the actual owner (worst
case 3 hop miss).

Modern processors execute instructions out of order. Memory
barriers are needed to enforce ordering.

Sequential consistency: every operation happens in program
order from the point of view of remote processors.

Spin locks can be improved by having an inner loop to wait for
unlockness to become visible (reducing interconnect traffic), but
this will still lead to a stampede upon unlock.

Queue based spin lock: threads spin on separate locations with
a linked list of waiters:

Lock:
QNode mine = new QNode(true, null);
QNode seenTail = tail;
while (CAS(&tail, seenTail, mine) != seenTail)
{ seenTail = tail; }
if (seenTail != null)
{ seenTail.next = mine; }
else
{ mine.blocked = false; }

Unlock:
if (mine.next != null)
{ mine.next.blocked = false; }
else {
if (CAS(&tail, mine, null) != mine) {
QNode seenNext;
while ((seenNext = CAS(&mine, next, null)) == null)
{}
seenNext.blocked = false;
}}
Big reader locks: per-CPU locks, readers acquire the lock for
their CPU but writers must acquire them all.

Mutexes can cause deadlock, priority inversion and preemption
or termination while holding locks.

Non-blocking data structures ensure that the system as a whole
can still make progress if any finite number of threads in it are
suspended.

• Wait freedom: per-thread progress bound

• Lock freedom: system wide progress bound (i.e. within a
bounded number of cycles some thread in the system will
get work done)

• Obstruction freedom: system wide progress is bound if
threads run in isolation (i.e. are waiting on different lo-
cations)

1



Operations are linearizable if for events A and B such that
A < B in the global clock ordering and are not overlapped in
time then that’s always the order observed between the threads.
Serializability does not make reference to a global clock.

Routing

Forwarding is the process of determining the next hop, routing
is that of establishing end-to-end paths.

Link state:

• Topology information flooded within routing domain

• Best end-to-end paths are computed locally

• Best end-to-end paths determine next hops

• Minimizes some notion of distance

• Works only for shared and uniform policy

• OSPF: can have hierarchical areas with unique LS
databases, routes exchanged between areas by distance vec-
tor

Distance vector:

• Ever router knows a little about network topology

• Best next-hops are chosen by each router for each destina-
tion

• Best end-to-end paths result from composition of next-hop
distances

• Does not require any notion of distance

• Does not require uniform policy

• RIP: distance is hop count

• Can have a problem with counting to infinity, solved by
letting ∞ = 16

Link state converges faster but requires more memory, CPU
and messages. Both protocols can induce transient forward-
ing loops during convergence. Distance vector has fewer policy
requirements.

BGP

IP forwarding table is logically a list of destination, next hop,
interface tuples. They can be constructed by administrator
(statically) for control or by routing protocols (dynamically)
which adapts to network changes and scales better. However,

fast dynamic adjustment can result in routing table volatility
due to bursty traffic characteristics.

Classful IPs: 24, 16, 8 bits of host addresses based on top bits
of address. CIDR: explicitly entered network prefix mask.

Autonomous system numbers: centrally allocated to all EGP
participants. Graphs of these do not show topology, but each
AS is typically connected internally.

BGP records the AS path of a route so you can reject routes
which contain your own AS. Traffic may not necessarily follow
the AS path.

Deaggregation due to multihoming may contribute to ta-
ble growth (same prefix is announced by multiple upstream
providers).

Transit ASes allow traffic with neither source nor destination
within the AS to flow across the network. Non-transit ASes
allow only traffic originating from the AS or traffic with a des-
tination within the AS to be transported. Peers provide transit
between customers but not between other peers.

Peering reduces upstream transit costs, can increase perfor-
mance and may be the only way to connect to the Tier 1 inter-
net, but you don’t want to peer yourself because peers are your
competition and you would rather have them as customers.

Parents typically filter the announcements of their customers
to prevent black-holing (announcement of unreachable routes
by ASes). This is implemented by route import policy.

When exporting routes: customers get everything,
peers/providers get customers/ISP routes. This is imple-
mented via route export policy.

Next hop attribute is updated every time a route announcement
crosses an AS boundary to the address of the border router that
announced the route.

Routes are tagged with a list of community values. Customers
will typically fiddle the communities to modify the local (rout-
ing) preference of upstream networks which tiebreaks identical
length AS paths. Local preference can be used to implement
customer backup links for outbound traffic, but for inbound
traffic must ensure you export routes with padded AS paths on
the backup link!

Hot potato routing: export routes via the egress point that
your IGP claims is the closest to the ingress point to reduce
costs. Customers tend to want their providers to carry the bits
however, so they export multi export discriminator attributes
in their routes which reflect their IGP costs so the upstream
provider can consider these costs before their own IGP distance.

BGP wedgie: interaction of local policies allows routings which
are consistent but unintended. No single group of operators
necessarily has all the information available to debug the prob-
lem. “Full” wedgies may not be resolved by simple bouncing of
an aberrant link.

2



Inter-domain routing is often asymmetric due to hot-potato
routing. Latency is not a metric space.

The goals of fast convergence, minimal updates and path re-
dundancy are at odds. No one knows where all the updates
come from: it may be path exploration, IGP instabilities be-
ing exported by routes directly, BGP sessions being reset due
to congestion or MED oscillation exporting internal instabil-
ity. Used to be aggravated by Cisco’s stateless (“just in case”)
withdrawals.

MEDs are only comparable within ASes, so the way they are
used means that BGPs distance comparison is not even a par-
tial order on routes. MED oscillation can lead to a constant
churning of routes.

Route flap damping: routes are given a penalty for changing.
If their total penalty exceeds the suppress limit, the route is
dampened. While it is not changing, the penalty decays ex-
ponentially until it reaches the reuse limit. However, you may
see spurious changes to a route due to a single announcement
arriving via multiple paths! This tends to punish small updates
for well-connected destinations.

Rate limiting: only publish routes every interval: currently set
to 30 seconds. This may delay convergence if it is set too low
or too high.

Distributed Shared Virtual Memory

Shared memory: easy to use but suffers from race conditions
and synchronisation cost

Message passing: gives control, protection and performance

Idea: each page has a home processor and can be mapped in
across the network. Centralized page manager runs on a single
processor and maintains owner(page) and copyset(page). On
read fault:

1. Reader contacts manager with request, forwarded to owner

2. Owner sends the page to reader and reader acknowledges
to the manager, who adds them to the copy-set

On write fault:

1. Writer contacts manager with request, manager invalidates
copy-set with a broadcast

2. Manager contacts the old owner who relinquishes the page
to the writer who acknowledges to the manager

Can spread managers out across multiple processors and even
make the owner the manager. In this case, may maintain per-
processor hint of who any given page is owned by, updated on
forwarding or invalidation.

Improved with weaker memory consistency than sequential con-
sistency e.g. release consistency (must acquire and release for
synchronisation). May label pages as e.g. private (ignore),
write-once (just service reads), read-mostly (owner broadcasts
updates), write-many (release consistency and buffering) or
synchronisation (strong consistency). Lazy release consistency
is best: updates not on release but on next acquire.

Can always do better with explicit messages, and making it
work well increases complexity beyond that of message passing.
Used on non-cache-coherent NUMA systems though.

Other Stupid Virtual Memory

Persistent virtual memory came up due to a desire for orthogo-
nal persistence. Most virtual memory is backed by non-volatile
storage anyway.

Multics: users saw a large number of orthogonal linear regions
(“segments”) of virtual address space which was their store. Seg-
ments were created and named by users.

Technical limitations of 32 bit pointers resulted in pointer swiz-
zling. All persistent data uses persistent pointers, but upon
access to the page these are rewritten by the system to point
to newly allocated but invalid real pages that would again be
handled specially upon access.

Recoverable virtual memory applies transactional semantics to
virtual memory. Typically just implement atomicity and some
durability (other characteristics expensive):

1. begin_transaction(rmode), where rmode specifies how
much you care about crashes

2. set_range(t, base, size) which prompts a copy of the region
which is added to the undo log (allows aborts)

3. end_transaction(t, cmode) causes synchronous write of all
ranges to the redo log: this does not care about consistency

4. When the redo log gets full log contents is reflected to
external segments and the log is truncated!!

LRVM involves three copies of data and requires expensive
writes. Rio Vista uses a battery backed NVRAM file cache
to store an undo log. Due to durability no redo log is neces-
sary, reducing copies required. When a machine reboots the
NVRAM contents are flushed to disk.

3



Capabilities

Capabilities are protected names for objects: possession is nec-
essary and sufficient for object access. They must be unforge-
able and supplied by the system, and can only be manipulated
in a restricted set of ways. They allow more flexible (non-
hierarchical) delegation.

In CAP, capabilities consisted of a base, limit and access code.
Had C-type segments which were the only ones allowed to trans-
fer to/from capability registers. Loading was done implicitly
whenever a capability is referred to. TCB had D and C type
capabilities on same segment.

Domains of protection are the sets of capabilities to which a
process has access. They are entered and left via special in-
structions. This gives rise to a hierarchy of control but not of
protection. A hierarchy of protection can be realised by speci-
fying capabilities relative to some other parent capability.

Microkernels

Microkernels increase modularity and hence allow you to take
advantage of SMP, reduce rebooting and isolate crashes. They
rely on IPC systems, typically based on ports (resource refer-
ences) and messages (the unit of communication). In Mach
these are secured via capabilities: every port had exactly one
read capability and many write capabilities, and capabilities
can be sent via ports.

Microkernels suffer from many kernel crossings (worse locality,
more large block copies). L3/L4 tried to rectify this with a set
of very fast primitives (recursive address space construction,
threads, IPC, unique identifier support). Threads execute with
an address space (no separate process abstraction) and IPC is
message passing between address spaces.

EROS is a persistent software capability microkernel. Persis-
tence implemented via circular log with checkpointing. It got
performance by translating a lot of capability infrastructure to
things that could be handled by the TLB (which acted as a sort
of capability cache).

Virtual Machines

Disco attempted to run commodity OSes on ccNUMA. Other
benefits: fault tolerance, sharing between OSes, run OSes spe-
cific to workload. However x86 is not virtualizable so the com-
mercial spin-off uses binary rewriting to manually insert traps.
Physical to machine address mapping is realized via shadow
page tables.

Denali/Xen use the virtual machine monitor as an isolation
kernel (fairness and security through lack of sharing). The OS
is rewritten to be virtualizable (para-virtualization) by using

events instead of interrupts and hypercalls instead of unvirtu-
alizable instructions. Xen charges for resource usage to discour-
age denial of service attacks. Asynchronous ring buffers used
for network and disk transfer.

VMMs are popular because of increased security, small OS
static size compared to memory and desire for flexibility.

Extensibility

Desirable to fix mistakes, support unanticipated features or
hardware, efficiency and individualism. Can also be used to
implement monitoring and allow for better system/application
integration (e.g. for soft real time applications).

Can provide everyone with a virtual machine but does not allow
layering violations.

Kernel-level schemes can be based on proof carrying code or
sandboxing. With PCC check that the proof says that the
code cannot violate the safety policy. However, requires formal
specification/semantics/language/algorithms/method for gen-
erating proofs. With sandboxing transform untrusted code into
safe code. Software fault isolation inserts instructions to per-
form bounds checking around memory accesses and detects un-
safe instructions. It is difficult to do this right (e.g. detect
stack modification) and it causes code bloat. VINO combined
this with resource quotas, timeouts and transactions on kernel
data structures. Isolation can also be enforced via language
level safety, as in SPIN: however, this cannot deal with locking
policies and lack of termination.

User-level schemes can be based on microkernels or exokernels.
Exokernels separate the concepts of protection and abstrac-
tion: abstractions deny optimizations and discourage innova-
tion. This is implemented via a per-application “library” oper-
ating system that works with real resources being multiplexed
and initialized by the kernel.

Databases

Minimize I/O, maximise concurrency. Use write-ahead log for
reliability.

Fixed format records depend on schema for interpretation, vari-
able format records are self describing. Can store records di-
rectly in disk blocks sequentially by primary key.

Spare index: smaller, so more of it fits within memory and it’s
better for item inserts and deletes of items not in the index.

Dense index: can do an existence check without accessing blocks
and needed for indexes on secondary keys but large. Indexes
could just store (small) block pointers for a range of items rather
than per-item record pointers.

B+ trees: all nodes have n keys and n + 1 pointers. Non leaf
node pointers point to nodes with key values < right key but

4



≥ left key. Leaves point directly to a record. All leaves are
at the same depth (balance) i.e. we store at least

⌊
n+1

2

⌋
data

pointers in leaves and
⌈

n+1
2

⌉
in non-leaves. Lookup time for N

records is Θ(log(n)logn(N)), so for a slow CPU choose a low n
(less binary search) and for a fast one choose high n (less disk
seeks). Upon insertion may need to recursively split from leaf
to the root. Upon deletion may need to either redistribute keys
or coalesce siblings (but most implementations don’t coalesce
due to hard concurrency problem).

Postgres: set-oriented POSTQUEL query language, small num-
ber of concepts and standard control flow but large memory
footprint. Uses no-overwrite storage manager: transaction state
just becomes a flag. Abort and recovery are very cheap and you
can do historical queries. However, records must be flushed on
commit, multiple (time varying) indexes may be required and
you need to flush the log to write-once media periodically. Time
travel queries turned out to be hard to express.

OSes are not suited to DBMS. OSes do extra data copies
to/from disks. Typical LRU replacement policies conflict with
linear/cyclic access to blocks and random access with zero prob-
ability of re-reference: want MRU really! OSes have no support
for synchronous reorder barriers for disk writes. Can get double
paging effect due to interaction between userspace buffer and
VM.

Distributed Storage

Scalability, location fault tolerance, mobility of access, cen-
tralised data management.

NAS distributed storage at the file-system level. SAN dis-
tributes storage at the block level (over fibre channel).

NFS: client/server RPC protocol. Initially stateless with idem-
potent requests: good for recovery but synchronous disk write
sucks and cannot help client caching. Version 3 allowed asyn-
chronous writes with explicit commit, version 4 total rewrite to
be stateful (e.g. explicit open and close) has compound opera-
tions etc.

AFS is a purely remote protocol with versioning to support
caching being separate from consistency. Supports live repli-
cation and relocation of volumes! Coda is an evolution that
supports disconnected operation by caching a “working set” lo-
cally and integrating upon reconnect.

LBFS designed for low bandwidth operation. Files are divided
into chunks based on the occurrence of a particular Rabin (in-
cremental) fingerprint value. Each chunk is hashed and if clients
want to write file portions they just transmit the hashes of the
relevant chunks, can avoid transfer if they match with remote
chunk database. Hash collisions are ignored in practice!

Serverless file systems distribute data across all nodes. xFS has
clients, cleaners, managers and storage servers. To read a file,
you lookup its manager in a globally replicated map, contact the
manager with request, get redirected to cache or disk. To write

file, obtain write token from manager and append all changes
to log. When you hit a threshold, flush to stripe group. Fast
due to parallelism (striping) for large writes and co-operative
caching. Managers are replicated for fault tolerance. JetFile
uses scalable reliable multicast to multicast requests for (ver-
sioned) data and hopefully receive a response. Write-on-close
semantics bumps version number, with the client becoming the
server for the new version.

SAN file systems can be asymmetric (use a synchronized meta-
data manager, clients access data disks directly) or symmetric
(clients access data and metadata directly and use distributed
locks to synchronise). Symmetric systems are more scalable
and fault tolerant.

5


